1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
/*
This code does smooth scaling of a pixmap.
This function returns a new pixmap representing the area starting at (0,0)
given by taking the source pixmap src, scaling it to width w, and height h,
and then positioning it at (frac(x),frac(y)).
*/
#include "fitz.h"
#ifdef DEBUG_SCALING
#include <windows.h>
static void debug_print(const char *fmt, ...)
{
va_list args;
char text[256];
va_start(args, fmt);
vsprintf(text, fmt, args);
va_end(args);
OutputDebugStringA(text);
}
#define DBUG(A) debug_print A
#else
#define DBUG(A) do {} while(0==1)
#endif
/*
Consider a row of source samples, src, of width src_w, positioned at x,
scaled to width dst_w.
src[i] is centred at: x + (i + 0.5)*dst_w/src_w
Therefore the distance between the centre of the jth output pixel and
the centre of the ith source sample is:
dist[j,i] = j + 0.5 - (x + (i + 0.5)*dst_w/src_w)
When scaling up, therefore:
dst[j] = SUM(filter(dist[j,i]) * src[i])
(for all ints i)
This can be simplified by noticing that filters are only non zero within
a given filter width (henceforth called W). So:
dst[j] = SUM(filter(dist[j,i]) * src[i])
(for ints i, s.t. (j*src_w/dst_w)-W < i < (j*src_w/dst_w)+W)
When scaling down, each filtered source sample is stretched to be wider
to avoid aliasing issues. This effectively reduces the distance between
centres.
dst[j] = SUM(filter(dist[j,i] * F) * F * src[i])
(where F = dst_w/src_w)
(for ints i, s.t. (j-W)/F < i < (j+W)/F)
*/
typedef struct fz_scalefilter_s fz_scalefilter;
struct fz_scalefilter_s
{
int width;
float (*fn)(fz_scalefilter *, float);
};
/* Image scale filters */
static float
triangle(fz_scalefilter *filter, float f)
{
if (f >= 1)
return 0;
return 1-f;
}
static float
box(fz_scalefilter *filter, float f)
{
if (f >= 0.5f)
return 0;
return 1;
}
static float
simple(fz_scalefilter *filter, float x)
{
if (x >= 1)
return 0;
return 1 + (2*x - 3)*x*x;
}
static float
lanczos2(fz_scalefilter *filter, float x)
{
if (x >= 2)
return 0;
return sinf(M_PI*x) * sinf(M_PI*x/2) / (M_PI*x) / (M_PI*x/2);
}
static float
lanczos3(fz_scalefilter *filter, float f)
{
if (f >= 3)
return 0;
return sinf(M_PI*f) * sinf(M_PI*f/3) / (M_PI*f) / (M_PI*f/3);
}
/*
The Mitchell family of filters is defined:
f(x) = 1 { (12-9B-6C)x^3 + (-18+12B+6C)x^2 + (6-2B) for x < 1
- {
6 { (-B-6C)x^3+(6B+30C)x^2+(-12B-48C)x+(8B+24C) for 1<=x<=2
The 'best' ones lie along the line B+2C = 1.
The literature suggests that B=1/3, C=1/3 is best.
f(x) = 1 { (12-3-2)x^3 - (-18+4+2)x^2 + (16/3) for x < 1
- {
6 { (-7/3)x^3 + 12x^2 - 20x + (32/3) for 1<=x<=2
f(x) = 1 { 21x^3 - 36x^2 + 16 for x < 1
- {
18{ -7x^3 + 36x^2 - 60x + 32 for 1<=x<=2
*/
static float
mitchell(fz_scalefilter *filter, float x)
{
if (x >= 2)
return 0;
if (x >= 1)
return (32 + x*(60 + x*(36 - 7*x)))/18;
return (16 + x*x*(-36 + 21*x))/18;
}
fz_scalefilter fz_scalefilter_box = { 1, box };
fz_scalefilter fz_scalefilter_triangle = { 1, triangle };
fz_scalefilter fz_scalefilter_simple = { 1, simple };
fz_scalefilter fz_scalefilter_lanczos2 = { 2, lanczos2 };
fz_scalefilter fz_scalefilter_lanczos3 = { 3, lanczos3 };
fz_scalefilter fz_scalefilter_mitchell = { 2, mitchell };
/*
We build ourselves a set of tables to contain the precalculated weights
for a given set of scale settings.
The first dst_w entries in index are the index into index of the
sets of weight for each destination pixel.
Each of the sets of weights is a set of values consisting of:
the minimum source pixel index used for this destination pixel
the number of weights used for this destination pixel
the weights themselves
So to calculate dst[i] we do the following:
weights = &index[index[i]];
min = *weights++;
len = *weights++;
dst[i] = 0;
while (--len > 0)
dst[i] += src[min++] * *weights++
in addition, we guarantee that at the end of this process weights will now
point to the weights value for dst pixel i+1.
In the simplest version of this algorithm, we would scale the whole image
horizontally first into a temporary buffer, then scale that temporary
buffer again vertically to give us our result. Using such a simple
algorithm would mean that could use the same style of weights for both
horizontal and vertical scaling.
Unfortunately, this would also require a large temporary buffer,
particularly in the case where we are scaling up.
We therefore modify the algorithm as follows; we scale scanlines from the
source image horizontally into a temporary buffer, until we have all the
contributors for a given output scanline. We then produce that output
scanline from the temporary buffer. In this way we restrict the height
of the temporary buffer to a small fraction of the final size.
Unfortunately, this means that the pseudo code for recombining a
scanline of fully scaled pixels is as follows:
weights = &index[index[y]];
min = *weights++;
len = *weights++;
for (x=0 to dst_w)
min2 = min
len2 = len
weights2 = weights
dst[x] = 0;
while (--len2 > 0)
dst[x] += temp[x][(min2++) % tmp_buf_height] * *weights2++
i.e. it requires a % operation for every source pixel - this is typically
expensive.
To avoid this, we alter the order in which vertical weights are stored,
so that they are ordered in the same order as the temporary buffer lines
would appear. This simplifies the algorithm to:
weights = &index[index[y]];
min = *weights++;
len = *weights++;
for (x=0 to dst_w)
min2 = 0
len2 = len
weights2 = weights
dst[x] = 0;
while (--len2 > 0)
dst[x] += temp[i][min2++] * *weights2++
This means that len may be larger than it needs to be (due to the
possible inclusion of a zero weight row or two), but in practise this
is only an increase of 1 or 2 at worst.
We implement this by generating the weights as normal (but ensuring we
leave enough space) and then reordering afterwards.
*/
typedef struct fz_weights_s fz_weights;
struct fz_weights_s
{
int count;
int max_len;
int index[1];
};
static fz_weights *
fz_newweights(fz_scalefilter *filter, int src_w, float dst_w, int dst_w_i)
{
int max_len;
fz_weights *weights;
if (src_w > dst_w)
{
/* Scaling down, so there will be a maximum of
* 2*filterwidth*src_w/dst_w src pixels
* contributing to each dst pixel. */
max_len = (int)ceilf((2 * filter->width * src_w)/dst_w);
}
else
{
/* Scaling up, so there will be a maximum of
* 2*filterwidth src pixels contributing to each dst pixel.
*/
max_len = 2 * filter->width;
}
/* We need the size of the struct,
* plus dst_w*sizeof(int) for the index
* plus (2+max_len)*sizeof(int) for the weights
* plus room for an extra set of weights for reordering.
*/
weights = fz_malloc(sizeof(*weights)+(max_len+3)*(dst_w_i+1)*sizeof(int));
if (weights == NULL)
return NULL;
weights->count = -1;
weights->max_len = max_len;
weights->index[0] = dst_w_i;
return weights;
}
static void
add_weight(fz_weights *weights, int j, int i, fz_scalefilter *filter,
float x, float F, float G, int src_w, float dst_w)
{
float dist = j + 0.5f - (x + (i + 0.5f)*dst_w/src_w);
float f;
int min, len, index;
dist *= G;
if (dist < 0)
dist = -dist;
f = filter->fn(filter, dist)*F;
if (f == 0)
return;
/* wrap i back into range */
#ifdef MIRROR_WRAP
do
{
if (i < 0)
i = -1-i;
else if (i >= src_w)
i = 2*src_w-1-i;
else
break;
}
while (1);
#else
if (i < 0)
i = 0;
else if (i >= src_w)
i = src_w-1;
#endif
DBUG(("add_weight[%d][%d] = %g dist=%g\n",j,i,f,dist));
if (weights->count != j)
{
/* New line */
assert(weights->count == j-1);
weights->count++;
if (j == 0)
index = weights->index[0];
else
{
index = weights->index[j-1];
index += 2 + weights->index[index+1];
}
weights->index[j] = index; /* row pointer */
weights->index[index] = i; /* min */
weights->index[index+1] = 0; /* len */
}
index = weights->index[j];
min = weights->index[index++];
len = weights->index[index++];
while (i < min)
{
/* This only happens in rare cases, but we need to insert
* one earlier. In exceedingly rare cases we may need to
* insert more than one earlier. */
int k;
for (k = len; k > 0; k--)
{
weights->index[index+k] = weights->index[index+k-1];
}
weights->index[index] = 0;
min--;
len++;
weights->index[index-2] = min;
weights->index[index-1] = len;
}
if (i-min >= len)
{
/* The usual case */
while (i-min >= ++len)
{
weights->index[index+len-1] = 0;
}
assert(len-1 == i-min);
weights->index[index+i-min] = (int)(256*f+0.5f);
weights->index[index-1] = len;
assert(len <= weights->max_len);
}
else
{
/* Infrequent case */
weights->index[index+i-min] += (int)(256*f+0.5f);
}
}
static void
reorder_weights(fz_weights *weights, int j, int src_w)
{
int idx = weights->index[j];
int min = weights->index[idx++];
int len = weights->index[idx++];
int max = weights->max_len;
int tmp = idx+max;
int i;
/* Copy into the temporary area */
memcpy(&weights->index[tmp], &weights->index[idx], sizeof(int)*len);
/* Pad out if required */
assert(len <= max);
assert(min+len <= src_w);
if (len < max)
{
memset(&weights->index[tmp+len], 0, sizeof(int)*(max-len));
len = max;
if (min + len > src_w)
{
min = src_w - len;
weights->index[idx-2] = min;
}
weights->index[idx-1] = len;
}
/* Copy back into the proper places */
for (i = 0; i < len; i++)
{
weights->index[idx+((min+i) % max)] = weights->index[tmp+i];
}
}
static void
check_weights(fz_weights *weights, int j)
{
int idx, len;
int sum = 0;
int max = -256;
int maxidx = 0;
int i;
idx = weights->index[j];
idx++; /* min */
len = weights->index[idx++];
for(i=0; i < len; i++)
{
int v = weights->index[idx++];
sum += v;
if (v > max)
{
max = v;
maxidx = idx;
}
}
weights->index[maxidx-1] += 256-sum;
DBUG(("total weight %d = %d\n", j, sum));
}
static fz_weights *
make_weights(int src_w, float x, float dst_w, fz_scalefilter *filter, int vertical)
{
fz_weights *weights;
int dst_w_int = (int)ceilf(x + dst_w);
float F, G;
float window;
int j;
if (dst_w < src_w)
{
/* Scaling down */
F = dst_w / src_w;
G = 1;
}
else
{
/* Scaling up */
F = 1;
G = src_w / dst_w;
}
window = filter->width / F;
DBUG(("make_weights src_w=%d x=%g dst_w=%g dst_w_int=%d F=%g window=%g\n", src_w, x, dst_w, dst_w_int, F, window));
weights = fz_newweights(filter, src_w, dst_w, dst_w_int);
if (weights == NULL)
return NULL;
for (j = 0; j < dst_w_int; j++)
{
/* find the position of the centre of dst[j] in src space */
float centre = (j+0.5f)*src_w/dst_w - 0.5f;
int l, r;
l = ceilf(centre - window);
r = floorf(centre + window);
DBUG(("%d: centre=%g l=%d r=%d\n", j, centre, l, r));
for (; l <= r; l++)
{
add_weight(weights, j, l, filter, x, F, G, src_w, dst_w);
}
check_weights(weights, j);
if (vertical)
{
reorder_weights(weights, j, src_w);
}
}
weights->count++; /* weights->count = dst_w_int now */
return weights;
}
static void
scale_row_to_temp(int *dst, unsigned char *src, fz_weights *weights, int n)
{
int *contrib = &weights->index[weights->index[0]];
int min, len, i, j;
for (i=weights->count; i > 0; i--)
{
min = *contrib++;
len = *contrib++;
min *= n;
for (j = 0; j < n; j++)
dst[j] = 0;
while (len-- > 0)
{
for (j = 0; j < n; j++)
dst[j] += src[min++] * *contrib;
contrib++;
}
dst += n;
}
}
static void
scale_row_from_temp(unsigned char *dst, int *src, fz_weights *weights, int width, int row)
{
int *contrib = &weights->index[weights->index[row]];
int len, x;
contrib++; /* Skip min */
len = *contrib++;
for (x=width; x > 0; x--)
{
int min = 0;
int val = 0;
int len2 = len;
int *contrib2 = contrib;
while (len2-- > 0)
{
val += src[min] * *contrib2++;
min += width;
}
val = (val+(1<<15))>>16;
if (val < 0)
val = 0;
else if (val > 255)
val = 255;
*dst++ = val;
src++;
}
}
fz_pixmap *
fz_smoothscalepixmap(fz_pixmap *src, float x, float y, float w, float h)
{
fz_scalefilter *filter = &fz_scalefilter_simple;
fz_weights *contrib_rows = NULL;
fz_weights *contrib_cols = NULL;
fz_pixmap *output = NULL;
int *temp = NULL;
int max_row, temp_span, temp_rows, row;
x -= floorf(x);
y -= floorf(y);
DBUG(("Scale: (%d,%d) to (%g,%g) at (%g,%g)\n",src->w,src->h,w,h,x,y));
/* Step 1: Calculate the weights for columns and rows */
contrib_cols = make_weights(src->w, x, w, filter, 0);
if (contrib_cols == NULL)
goto cleanup;
contrib_rows = make_weights(src->h, y, h, filter, 1);
if (contrib_rows == NULL)
goto cleanup;
temp_span = contrib_cols->count * src->n;
temp_rows = contrib_rows->max_len;
temp = fz_malloc(sizeof(int)*temp_span*temp_rows);
if (temp == NULL)
goto cleanup;
output = fz_newpixmap(src->colorspace, 0, 0, contrib_cols->count, contrib_rows->count);
if (output == NULL)
goto cleanup;
/* Step 2: Apply the weights */
max_row = 0;
for (row = 0; row < contrib_rows->count; row++)
{
/*
Which source rows do we need to have scaled into the temporary
buffer in order to be able to do the final scale?
*/
int row_index = contrib_rows->index[row];
int row_min = contrib_rows->index[row_index++];
int row_len = contrib_rows->index[row_index++];
while (max_row < row_min+row_len)
{
/* Scale another row */
assert(max_row < src->h);
DBUG(("scaling row %d to temp\n", max_row));
scale_row_to_temp(&temp[temp_span*(max_row % temp_rows)], &src->samples[max_row*src->w*src->n], contrib_cols, src->n);
max_row++;
}
DBUG(("scaling row %d from temp\n", row));
scale_row_from_temp(&output->samples[row*output->w*output->n], temp, contrib_rows, temp_span, row);
}
cleanup:
fz_free(contrib_rows);
fz_free(contrib_cols);
fz_free(temp);
return output;
}
|