summaryrefslogtreecommitdiff
path: root/fitz/res_shade.c
blob: 0be4ba7c8a324ee48fa58dcb890392cd00da790c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "fitz.h"

fz_shade *
fz_keep_shade(fz_shade *shade)
{
	return (fz_shade *)fz_keep_storable(&shade->storable);
}

void
fz_free_shade_imp(fz_context *ctx, fz_storable *shade_)
{
	fz_shade *shade = (fz_shade *)shade_;

	if (shade->colorspace)
		fz_drop_colorspace(ctx, shade->colorspace);
	fz_free(ctx, shade->mesh);
	fz_free(ctx, shade);
}

void
fz_drop_shade(fz_context *ctx, fz_shade *shade)
{
	fz_drop_storable(ctx, &shade->storable);
}

fz_rect
fz_bound_shade(fz_shade *shade, fz_matrix ctm)
{
	float *v;
	fz_rect r, s;
	fz_point p;
	int i, ncomp, nvert;

	ctm = fz_concat(shade->matrix, ctm);
	ncomp = shade->use_function ? 3 : 2 + shade->colorspace->n;
	nvert = shade->mesh_len / ncomp;
	v = shade->mesh;

	s = fz_transform_rect(ctm, shade->bbox);
	if (shade->type == FZ_LINEAR)
		return fz_intersect_rect(s, fz_infinite_rect);
	if (shade->type == FZ_RADIAL)
		return fz_intersect_rect(s, fz_infinite_rect);

	if (nvert == 0)
		return fz_empty_rect;

	p.x = v[0];
	p.y = v[1];
	v += ncomp;
	p = fz_transform_point(ctm, p);
	r.x0 = r.x1 = p.x;
	r.y0 = r.y1 = p.y;

	for (i = 1; i < nvert; i++)
	{
		p.x = v[0];
		p.y = v[1];
		p = fz_transform_point(ctm, p);
		v += ncomp;
		if (p.x < r.x0) r.x0 = p.x;
		if (p.y < r.y0) r.y0 = p.y;
		if (p.x > r.x1) r.x1 = p.x;
		if (p.y > r.y1) r.y1 = p.y;
	}

	return fz_intersect_rect(s, r);
}

void
fz_debug_shade(fz_shade *shade)
{
	int i, j, n;
	float *vertex;
	int triangle;

	printf("shading {\n");

	switch (shade->type)
	{
	case FZ_LINEAR: printf("\ttype linear\n"); break;
	case FZ_RADIAL: printf("\ttype radial\n"); break;
	case FZ_MESH: printf("\ttype mesh\n"); break;
	}

	printf("\tbbox [%g %g %g %g]\n",
		shade->bbox.x0, shade->bbox.y0,
		shade->bbox.x1, shade->bbox.y1);

	printf("\tcolorspace %s\n", shade->colorspace->name);

	printf("\tmatrix [%g %g %g %g %g %g]\n",
			shade->matrix.a, shade->matrix.b, shade->matrix.c,
			shade->matrix.d, shade->matrix.e, shade->matrix.f);

	if (shade->use_background)
	{
		printf("\tbackground [");
		for (i = 0; i < shade->colorspace->n; i++)
			printf("%s%g", i == 0 ? "" : " ", shade->background[i]);
		printf("]\n");
	}

	if (shade->use_function)
	{
		printf("\tfunction\n");
		n = 3;
	}
	else
		n = 2 + shade->colorspace->n;

	printf("\tvertices: %d\n", shade->mesh_len);

	vertex = shade->mesh;
	triangle = 0;
	i = 0;
	while (i < shade->mesh_len)
	{
		printf("\t%d:(%g, %g): ", triangle, vertex[0], vertex[1]);

		for (j = 2; j < n; j++)
			printf("%s%g", j == 2 ? "" : " ", vertex[j]);
		printf("\n");

		vertex += n;
		i++;
		if (i % 3 == 0)
			triangle++;
	}

	printf("}\n");
}