summaryrefslogtreecommitdiff
path: root/source/fitz/crypt-sha2.c
blob: ffedfc9521b3ece43fc3e17163d6d35a4e8f3c15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
This code is based on the code found from 7-Zip, which has a modified
version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
The code was modified a little to fit into liblzma and fitz.

This file has been put into the public domain.
You can do whatever you want with this file.

SHA-384 and SHA-512 were also taken from Crypto++ and adapted for fitz.
*/

#include "mupdf/fitz.h"

static inline int isbigendian(void)
{
	static const int one = 1;
	return *(char*)&one == 0;
}

static inline unsigned int bswap32(unsigned int num)
{
	if (!isbigendian())
	{
		return	( (((num) << 24))
			| (((num) << 8) & 0x00FF0000)
			| (((num) >> 8) & 0x0000FF00)
			| (((num) >> 24)) );
	}
	return num;
}

static inline uint64_t bswap64(uint64_t num)
{
	if (!isbigendian())
	{
		return ( (((num) << 56))
				| (((num) << 40) & 0x00FF000000000000ULL)
				| (((num) << 24) & 0x0000FF0000000000ULL)
				| (((num) << 8) & 0x000000FF00000000ULL)
				| (((num) >> 8) & 0x00000000FF000000ULL)
				| (((num) >> 24) & 0x0000000000FF0000ULL)
				| (((num) >> 40) & 0x000000000000FF00ULL)
				| (((num) >> 56)) );
	}
	return num;
}

/* At least on x86, GCC is able to optimize this to a rotate instruction. */
#define rotr(num, amount) ((num) >> (amount) | (num) << (8 * sizeof(num) - (amount)))

#define blk0(i) (W[i] = data[i])
#define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
		+ s0(W[(i - 15) & 15]))

#define Ch(x, y, z) (z ^ (x & (y ^ z)))
#define Maj(x, y, z) ((x & y) | (z & (x | y)))

#define a(i) T[(0 - i) & 7]
#define b(i) T[(1 - i) & 7]
#define c(i) T[(2 - i) & 7]
#define d(i) T[(3 - i) & 7]
#define e(i) T[(4 - i) & 7]
#define f(i) T[(5 - i) & 7]
#define g(i) T[(6 - i) & 7]
#define h(i) T[(7 - i) & 7]

#define R(i) \
	h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + K[i + j] \
		+ (j ? blk2(i) : blk0(i)); \
	d(i) += h(i); \
	h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))

/* For SHA256 */

#define S0(x) (rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22))
#define S1(x) (rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25))
#define s0(x) (rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3))
#define s1(x) (rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10))

static const unsigned int SHA256_K[64] = {
	0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
	0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
	0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
	0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
	0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
	0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
	0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
	0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
	0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
	0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
	0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
	0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
	0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
	0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
	0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
	0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};

static void
transform256(unsigned int state[8], const unsigned int data_xe[16])
{
	const unsigned int *K = SHA256_K;
	unsigned int data[16];
	unsigned int W[16];
	unsigned int T[8];
	unsigned int j;

	/* ensure big-endian integers */
	for (j = 0; j < 16; j++)
		data[j] = bswap32(data_xe[j]);

	/* Copy state[] to working vars. */
	memcpy(T, state, sizeof(T));

	/* 64 operations, partially loop unrolled */
	for (j = 0; j < 64; j += 16) {
		R( 0); R( 1); R( 2); R( 3);
		R( 4); R( 5); R( 6); R( 7);
		R( 8); R( 9); R(10); R(11);
		R(12); R(13); R(14); R(15);
	}

	/* Add the working vars back into state[]. */
	state[0] += a(0);
	state[1] += b(0);
	state[2] += c(0);
	state[3] += d(0);
	state[4] += e(0);
	state[5] += f(0);
	state[6] += g(0);
	state[7] += h(0);
}

#undef S0
#undef S1
#undef s0
#undef s1

void fz_sha256_init(fz_sha256 *context)
{
	context->count[0] = context->count[1] = 0;

	context->state[0] = 0x6A09E667;
	context->state[1] = 0xBB67AE85;
	context->state[2] = 0x3C6EF372;
	context->state[3] = 0xA54FF53A;
	context->state[4] = 0x510E527F;
	context->state[5] = 0x9B05688C;
	context->state[6] = 0x1F83D9AB;
	context->state[7] = 0x5BE0CD19;
}

void fz_sha256_update(fz_sha256 *context, const unsigned char *input, unsigned int inlen)
{
	/* Copy the input data into a properly aligned temporary buffer.
	 * This way we can be called with arbitrarily sized buffers
	 * (no need to be multiple of 64 bytes), and the code works also
	 * on architectures that don't allow unaligned memory access. */
	while (inlen > 0)
	{
		const unsigned int copy_start = context->count[0] & 0x3F;
		unsigned int copy_size = 64 - copy_start;
		if (copy_size > inlen)
			copy_size = inlen;

		memcpy(context->buffer.u8 + copy_start, input, copy_size);

		input += copy_size;
		inlen -= copy_size;
		context->count[0] += copy_size;
		/* carry overflow from low to high */
		if (context->count[0] < copy_size)
			context->count[1]++;

		if ((context->count[0] & 0x3F) == 0)
			transform256(context->state, context->buffer.u32);
	}
}

void fz_sha256_final(fz_sha256 *context, unsigned char digest[32])
{
	/* Add padding as described in RFC 3174 (it describes SHA-1 but
	 * the same padding style is used for SHA-256 too). */
	unsigned int j = context->count[0] & 0x3F;
	context->buffer.u8[j++] = 0x80;

	while (j != 56)
	{
		if (j == 64)
		{
			transform256(context->state, context->buffer.u32);
			j = 0;
		}
		context->buffer.u8[j++] = 0x00;
	}

	/* Convert the message size from bytes to bits. */
	context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29);
	context->count[0] = context->count[0] << 3;

	context->buffer.u32[14] = bswap32(context->count[1]);
	context->buffer.u32[15] = bswap32(context->count[0]);
	transform256(context->state, context->buffer.u32);

	for (j = 0; j < 8; j++)
		((unsigned int *)digest)[j] = bswap32(context->state[j]);
	memset(context, 0, sizeof(fz_sha256));
}

/* For SHA512 */

#define S0(x) (rotr(x, 28) ^ rotr(x, 34) ^ rotr(x, 39))
#define S1(x) (rotr(x, 14) ^ rotr(x, 18) ^ rotr(x, 41))
#define s0(x) (rotr(x, 1) ^ rotr(x, 8) ^ (x >> 7))
#define s1(x) (rotr(x, 19) ^ rotr(x, 61) ^ (x >> 6))

static const uint64_t SHA512_K[80] = {
	0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL,
	0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL,
	0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL,
	0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL,
	0xD807AA98A3030242ULL, 0x12835B0145706FBEULL,
	0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
	0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL,
	0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL,
	0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL,
	0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL,
	0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL,
	0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
	0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL,
	0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL,
	0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL,
	0x06CA6351E003826FULL, 0x142929670A0E6E70ULL,
	0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL,
	0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
	0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL,
	0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL,
	0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL,
	0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL,
	0xD192E819D6EF5218ULL, 0xD69906245565A910ULL,
	0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
	0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL,
	0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL,
	0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL,
	0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL,
	0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL,
	0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
	0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL,
	0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL,
	0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL,
	0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL,
	0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL,
	0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
	0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL,
	0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL,
	0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL,
	0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL,
};

static void
transform512(uint64_t state[8], const uint64_t data_xe[16])
{
	const uint64_t *K = SHA512_K;
	uint64_t data[16];
	uint64_t W[16];
	uint64_t T[8];
	unsigned int j;

	/* ensure big-endian integers */
	for (j = 0; j < 16; j++)
		data[j] = bswap64(data_xe[j]);

	/* Copy state[] to working vars. */
	memcpy(T, state, sizeof(T));

	/* 80 operations, partially loop unrolled */
	for (j = 0; j < 80; j+= 16) {
		R( 0); R( 1); R( 2); R( 3);
		R( 4); R( 5); R( 6); R( 7);
		R( 8); R( 9); R(10); R(11);
		R(12); R(13); R(14); R(15);
	}

	/* Add the working vars back into state[]. */
	state[0] += a(0);
	state[1] += b(0);
	state[2] += c(0);
	state[3] += d(0);
	state[4] += e(0);
	state[5] += f(0);
	state[6] += g(0);
	state[7] += h(0);
}

#undef S0
#undef S1
#undef s0
#undef s1

void fz_sha512_init(fz_sha512 *context)
{
	context->count[0] = context->count[1] = 0;

	context->state[0] = 0x6A09E667F3BCC908ull;
	context->state[1] = 0xBB67AE8584CAA73Bull;
	context->state[2] = 0x3C6EF372FE94F82Bull;
	context->state[3] = 0xA54FF53A5F1D36F1ull;
	context->state[4] = 0x510E527FADE682D1ull;
	context->state[5] = 0x9B05688C2B3E6C1Full;
	context->state[6] = 0x1F83D9ABFB41BD6Bull;
	context->state[7] = 0x5BE0CD19137E2179ull;
}

void fz_sha512_update(fz_sha512 *context, const unsigned char *input, unsigned int inlen)
{
	/* Copy the input data into a properly aligned temporary buffer.
	 * This way we can be called with arbitrarily sized buffers
	 * (no need to be multiple of 128 bytes), and the code works also
	 * on architectures that don't allow unaligned memory access. */
	while (inlen > 0)
	{
		const unsigned int copy_start = context->count[0] & 0x7F;
		unsigned int copy_size = 128 - copy_start;
		if (copy_size > inlen)
			copy_size = inlen;

		memcpy(context->buffer.u8 + copy_start, input, copy_size);

		input += copy_size;
		inlen -= copy_size;
		context->count[0] += copy_size;
		/* carry overflow from low to high */
		if (context->count[0] < copy_size)
			context->count[1]++;

		if ((context->count[0] & 0x7F) == 0)
			transform512(context->state, context->buffer.u64);
	}
}

void fz_sha512_final(fz_sha512 *context, unsigned char digest[64])
{
	/* Add padding as described in RFC 3174 (it describes SHA-1 but
	 * the same padding style is used for SHA-512 too). */
	unsigned int j = context->count[0] & 0x7F;
	context->buffer.u8[j++] = 0x80;

	while (j != 112)
	{
		if (j == 128)
		{
			transform512(context->state, context->buffer.u64);
			j = 0;
		}
		context->buffer.u8[j++] = 0x00;
	}

	/* Convert the message size from bytes to bits. */
	context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29);
	context->count[0] = context->count[0] << 3;

	context->buffer.u64[14] = bswap64(context->count[1]);
	context->buffer.u64[15] = bswap64(context->count[0]);
	transform512(context->state, context->buffer.u64);

	for (j = 0; j < 8; j++)
		((uint64_t *)digest)[j] = bswap64(context->state[j]);
	memset(context, 0, sizeof(fz_sha512));
}

void fz_sha384_init(fz_sha384 *context)
{
	context->count[0] = context->count[1] = 0;

	context->state[0] = 0xCBBB9D5DC1059ED8ull;
	context->state[1] = 0x629A292A367CD507ull;
	context->state[2] = 0x9159015A3070DD17ull;
	context->state[3] = 0x152FECD8F70E5939ull;
	context->state[4] = 0x67332667FFC00B31ull;
	context->state[5] = 0x8EB44A8768581511ull;
	context->state[6] = 0xDB0C2E0D64F98FA7ull;
	context->state[7] = 0x47B5481DBEFA4FA4ull;
}

void fz_sha384_update(fz_sha384 *context, const unsigned char *input, unsigned int inlen)
{
	fz_sha512_update(context, input, inlen);
}

void fz_sha384_final(fz_sha384 *context, unsigned char digest[64])
{
	fz_sha512_final(context, digest);
}