1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
|
/* The authors of this software are Rob Pike and Ken Thompson.
* Copyright (c) 2002 by Lucent Technologies.
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR LUCENT TECHNOLOGIES MAKE ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*/
#include "mupdf/fitz.h"
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#ifndef INFINITY
#define INFINITY (DBL_MAX+DBL_MAX)
#endif
#ifndef NAN
#define NAN (INFINITY-INFINITY)
#endif
typedef unsigned long ulong;
enum { NSIGNIF = 17 };
/*
* first few powers of 10, enough for about 1/2 of the
* total space for doubles.
*/
static double pows10[] =
{
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29,
1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39,
1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48, 1e49,
1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59,
1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69,
1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79,
1e80, 1e81, 1e82, 1e83, 1e84, 1e85, 1e86, 1e87, 1e88, 1e89,
1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96, 1e97, 1e98, 1e99,
1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109,
1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119,
1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129,
1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139,
1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149,
1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159,
};
#define npows10 ((int)(sizeof(pows10)/sizeof(pows10[0])))
#define pow10(x) fmtpow10(x)
static double
pow10(int n)
{
double d;
int neg;
neg = 0;
if(n < 0){
neg = 1;
n = -n;
}
if(n < npows10)
d = pows10[n];
else{
d = pows10[npows10-1];
for(;;){
n -= npows10 - 1;
if(n < npows10){
d *= pows10[n];
break;
}
d *= pows10[npows10 - 1];
}
}
if(neg)
return 1./d;
return d;
}
/*
* add 1 to the decimal integer string a of length n.
* if 99999 overflows into 10000, return 1 to tell caller
* to move the virtual decimal point.
*/
static int
xadd1(char *a, int n)
{
char *b;
int c;
if(n < 0 || n > NSIGNIF)
return 0;
for(b = a+n-1; b >= a; b--) {
c = *b + 1;
if(c <= '9') {
*b = c;
return 0;
}
*b = '0';
}
/*
* need to overflow adding digit.
* shift number down and insert 1 at beginning.
* decimal is known to be 0s or we wouldn't
* have gotten this far. (e.g., 99999+1 => 00000)
*/
a[0] = '1';
return 1;
}
/*
* subtract 1 from the decimal integer string a.
* if 10000 underflows into 09999, make it 99999
* and return 1 to tell caller to move the virtual
* decimal point. this way, xsub1 is inverse of xadd1.
*/
static int
xsub1(char *a, int n)
{
char *b;
int c;
if(n < 0 || n > NSIGNIF)
return 0;
for(b = a+n-1; b >= a; b--) {
c = *b - 1;
if(c >= '0') {
if(c == '0' && b == a) {
/*
* just zeroed the top digit; shift everyone up.
* decimal is known to be 9s or we wouldn't
* have gotten this far. (e.g., 10000-1 => 09999)
*/
*b = '9';
return 1;
}
*b = c;
return 0;
}
*b = '9';
}
/*
* can't get here. the number a is always normalized
* so that it has a nonzero first digit.
*/
return 0;
}
/*
* format exponent like sprintf(p, "e%+d", e)
*/
static void
fmtexp(char *p, int e)
{
char se[9];
int i;
*p++ = 'e';
if(e < 0) {
*p++ = '-';
e = -e;
} else
*p++ = '+';
i = 0;
while(e) {
se[i++] = e % 10 + '0';
e /= 10;
}
while(i < 1)
se[i++] = '0';
while(i > 0)
*p++ = se[--i];
*p++ = '\0';
}
/*
* compute decimal integer m, exp such that:
* f = m*10^exp
* m is as short as possible with losing exactness
* assumes special cases (NaN, +Inf, -Inf) have been handled.
*/
void
fz_dtoa(double f, char *s, int *exp, int *neg, int *ns)
{
int c, d, e2, e, ee, i, ndigit, oerrno;
char tmp[NSIGNIF+10];
double g;
oerrno = errno; /* in case strtod smashes errno */
/*
* make f non-negative.
*/
*neg = 0;
if(f < 0) {
f = -f;
*neg = 1;
}
/*
* must handle zero specially.
*/
if(f == 0){
*exp = 0;
s[0] = '0';
s[1] = '\0';
*ns = 1;
return;
}
/*
* find g,e such that f = g*10^e.
* guess 10-exponent using 2-exponent, then fine tune.
*/
frexp(f, &e2);
e = (int)(e2 * .301029995664);
g = f * pow10(-e);
while(g < 1) {
e--;
g = f * pow10(-e);
}
while(g >= 10) {
e++;
g = f * pow10(-e);
}
/*
* convert NSIGNIF digits as a first approximation.
*/
for(i=0; i<NSIGNIF; i++) {
d = (int)g;
s[i] = d+'0';
g = (g-d) * 10;
}
s[i] = 0;
/*
* adjust e because s is 314159... not 3.14159...
*/
e -= NSIGNIF-1;
fmtexp(s+NSIGNIF, e);
/*
* adjust conversion until strtod(s) == f exactly.
*/
for(i=0; i<10; i++) {
g = fz_strtod(s, NULL);
if(f > g) {
if(xadd1(s, NSIGNIF)) {
/* gained a digit */
e--;
fmtexp(s+NSIGNIF, e);
}
continue;
}
if(f < g) {
if(xsub1(s, NSIGNIF)) {
/* lost a digit */
e++;
fmtexp(s+NSIGNIF, e);
}
continue;
}
break;
}
/*
* play with the decimal to try to simplify.
*/
/*
* bump last few digits up to 9 if we can
*/
for(i=NSIGNIF-1; i>=NSIGNIF-3; i--) {
c = s[i];
if(c != '9') {
s[i] = '9';
g = fz_strtod(s, NULL);
if(g != f) {
s[i] = c;
break;
}
}
}
/*
* add 1 in hopes of turning 9s to 0s
*/
if(s[NSIGNIF-1] == '9') {
strcpy(tmp, s);
ee = e;
if(xadd1(tmp, NSIGNIF)) {
ee--;
fmtexp(tmp+NSIGNIF, ee);
}
g = fz_strtod(tmp, NULL);
if(g == f) {
strcpy(s, tmp);
e = ee;
}
}
/*
* bump last few digits down to 0 as we can.
*/
for(i=NSIGNIF-1; i>=NSIGNIF-3; i--) {
c = s[i];
if(c != '0') {
s[i] = '0';
g = fz_strtod(s, NULL);
if(g != f) {
s[i] = c;
break;
}
}
}
/*
* remove trailing zeros.
*/
ndigit = NSIGNIF;
while(ndigit > 1 && s[ndigit-1] == '0'){
e++;
--ndigit;
}
s[ndigit] = 0;
*exp = e;
*ns = ndigit;
errno = oerrno;
}
static ulong
umuldiv(ulong a, ulong b, ulong c)
{
double d;
d = ((double)a * (double)b) / (double)c;
if(d >= 4294967295.)
d = 4294967295.;
return (ulong)d;
}
/*
* This routine will convert to arbitrary precision
* floating point entirely in multi-precision fixed.
* The answer is the closest floating point number to
* the given decimal number. Exactly half way are
* rounded ala ieee rules.
* Method is to scale input decimal between .500 and .999...
* with external power of 2, then binary search for the
* closest mantissa to this decimal number.
* Nmant is is the required precision. (53 for ieee dp)
* Nbits is the max number of bits/word. (must be <= 28)
* Prec is calculated - the number of words of fixed mantissa.
*/
enum
{
Nbits = 28, /* bits safely represented in a ulong */
Nmant = 53, /* bits of precision required */
Prec = (Nmant+Nbits+1)/Nbits, /* words of Nbits each to represent mantissa */
Sigbit = 1<<(Prec*Nbits-Nmant), /* first significant bit of Prec-th word */
Ndig = 1500,
One = (ulong)(1<<Nbits),
Half = (ulong)(One>>1),
Maxe = 310,
Fsign = 1<<0, /* found - */
Fesign = 1<<1, /* found e- */
Fdpoint = 1<<2, /* found . */
S0 = 0, /* _ _S0 +S1 #S2 .S3 */
S1, /* _+ #S2 .S3 */
S2, /* _+# #S2 .S4 eS5 */
S3, /* _+. #S4 */
S4, /* _+#.# #S4 eS5 */
S5, /* _+#.#e +S6 #S7 */
S6, /* _+#.#e+ #S7 */
S7 /* _+#.#e+# #S7 */
};
static int xcmp(char*, char*);
static int fpcmp(char*, ulong*);
static void frnorm(ulong*);
static void divascii(char*, int*, int*, int*);
static void mulascii(char*, int*, int*, int*);
typedef struct Tab Tab;
struct Tab
{
int bp;
int siz;
char* cmp;
};
double
fz_strtod(const char *as, char **aas)
{
int na, ex, dp, bp, c, i, flag, state;
ulong low[Prec], hig[Prec], mid[Prec];
double d;
char *s, a[Ndig];
flag = 0; /* Fsign, Fesign, Fdpoint */
na = 0; /* number of digits of a[] */
dp = 0; /* na of decimal point */
ex = 0; /* exonent */
state = S0;
for(s=(char*)as;; s++) {
c = *s;
if(c >= '0' && c <= '9') {
switch(state) {
case S0:
case S1:
case S2:
state = S2;
break;
case S3:
case S4:
state = S4;
break;
case S5:
case S6:
case S7:
state = S7;
ex = ex*10 + (c-'0');
continue;
}
if(na == 0 && c == '0') {
dp--;
continue;
}
if(na < Ndig-50)
a[na++] = c;
continue;
}
switch(c) {
case '\t':
case '\n':
case '\v':
case '\f':
case '\r':
case ' ':
if(state == S0)
continue;
break;
case '-':
if(state == S0)
flag |= Fsign;
else
flag |= Fesign;
case '+':
if(state == S0)
state = S1;
else
if(state == S5)
state = S6;
else
break; /* syntax */
continue;
case '.':
flag |= Fdpoint;
dp = na;
if(state == S0 || state == S1) {
state = S3;
continue;
}
if(state == S2) {
state = S4;
continue;
}
break;
case 'e':
case 'E':
if(state == S2 || state == S4) {
state = S5;
continue;
}
break;
}
break;
}
/*
* clean up return char-pointer
*/
switch(state) {
case S0:
if(xcmp(s, "nan") == 0) {
if(aas != NULL)
*aas = s+3;
goto retnan;
}
case S1:
if(xcmp(s, "infinity") == 0) {
if(aas != NULL)
*aas = s+8;
goto retinf;
}
if(xcmp(s, "inf") == 0) {
if(aas != NULL)
*aas = s+3;
goto retinf;
}
case S3:
if(aas != NULL)
*aas = (char*)as;
goto ret0; /* no digits found */
case S6:
s--; /* back over +- */
case S5:
s--; /* back over e */
break;
}
if(aas != NULL)
*aas = s;
if(flag & Fdpoint)
while(na > 0 && a[na-1] == '0')
na--;
if(na == 0)
goto ret0; /* zero */
a[na] = 0;
if(!(flag & Fdpoint))
dp = na;
if(flag & Fesign)
ex = -ex;
dp += ex;
if(dp < -Maxe){
errno = ERANGE;
goto ret0; /* underflow by exp */
} else
if(dp > +Maxe)
goto retinf; /* overflow by exp */
/*
* normalize the decimal ascii number
* to range .[5-9][0-9]* e0
*/
bp = 0; /* binary exponent */
while(dp > 0)
divascii(a, &na, &dp, &bp);
while(dp < 0 || a[0] < '5')
mulascii(a, &na, &dp, &bp);
/* close approx by naive conversion */
mid[0] = 0;
mid[1] = 1;
for(i=0; (c=a[i]) != '\0'; i++) {
mid[0] = mid[0]*10 + (c-'0');
mid[1] = mid[1]*10;
if(i >= 8)
break;
}
low[0] = umuldiv(mid[0], One, mid[1]);
hig[0] = umuldiv(mid[0]+1, One, mid[1]);
for(i=1; i<Prec; i++) {
low[i] = 0;
hig[i] = One-1;
}
/* binary search for closest mantissa */
for(;;) {
/* mid = (hig + low) / 2 */
c = 0;
for(i=0; i<Prec; i++) {
mid[i] = hig[i] + low[i];
if(c)
mid[i] += One;
c = mid[i] & 1;
mid[i] >>= 1;
}
frnorm(mid);
/* compare */
c = fpcmp(a, mid);
if(c > 0) {
c = 1;
for(i=0; i<Prec; i++)
if(low[i] != mid[i]) {
c = 0;
low[i] = mid[i];
}
if(c)
break; /* between mid and hig */
continue;
}
if(c < 0) {
for(i=0; i<Prec; i++)
hig[i] = mid[i];
continue;
}
/* only hard part is if even/odd roundings wants to go up */
c = mid[Prec-1] & (Sigbit-1);
if(c == Sigbit/2 && (mid[Prec-1]&Sigbit) == 0)
mid[Prec-1] -= c;
break; /* exactly mid */
}
/* normal rounding applies */
c = mid[Prec-1] & (Sigbit-1);
mid[Prec-1] -= c;
if(c >= Sigbit/2) {
mid[Prec-1] += Sigbit;
frnorm(mid);
}
goto out;
ret0:
return 0;
retnan:
return NAN;
retinf:
/*
* Unix strtod requires these. Plan 9 would return Inf(0) or Inf(-1). */
errno = ERANGE;
if(flag & Fsign)
return -HUGE_VAL;
return HUGE_VAL;
out:
d = 0;
for(i=0; i<Prec; i++)
d = d*One + mid[i];
if(flag & Fsign)
d = -d;
d = ldexp(d, bp - Prec*Nbits);
if(d == 0){ /* underflow */
errno = ERANGE;
}
return d;
}
static void
frnorm(ulong *f)
{
int i, c;
c = 0;
for(i=Prec-1; i>0; i--) {
f[i] += c;
c = f[i] >> Nbits;
f[i] &= One-1;
}
f[0] += c;
}
static int
fpcmp(char *a, ulong* f)
{
ulong tf[Prec];
int i, d, c;
for(i=0; i<Prec; i++)
tf[i] = f[i];
for(;;) {
/* tf *= 10 */
for(i=0; i<Prec; i++)
tf[i] = tf[i]*10;
frnorm(tf);
d = (tf[0] >> Nbits) + '0';
tf[0] &= One-1;
/* compare next digit */
c = *a;
if(c == 0) {
if('0' < d)
return -1;
if(tf[0] != 0)
goto cont;
for(i=1; i<Prec; i++)
if(tf[i] != 0)
goto cont;
return 0;
}
if(c > d)
return +1;
if(c < d)
return -1;
a++;
cont:;
}
}
static void
divby(char *a, int *na, int b)
{
int n, c;
char *p;
p = a;
n = 0;
while(n>>b == 0) {
c = *a++;
if(c == 0) {
while(n) {
c = n*10;
if(c>>b)
break;
n = c;
}
goto xx;
}
n = n*10 + c-'0';
(*na)--;
}
for(;;) {
c = n>>b;
n -= c<<b;
*p++ = c + '0';
c = *a++;
if(c == 0)
break;
n = n*10 + c-'0';
}
(*na)++;
xx:
while(n) {
n = n*10;
c = n>>b;
n -= c<<b;
*p++ = c + '0';
(*na)++;
}
*p = 0;
}
static Tab tab1[] =
{
{ 1, 0, "" },
{ 3, 1, "7" },
{ 6, 2, "63" },
{ 9, 3, "511" },
{ 13, 4, "8191" },
{ 16, 5, "65535" },
{ 19, 6, "524287" },
{ 23, 7, "8388607" },
{ 26, 8, "67108863" },
{ 27, 9, "134217727" },
};
static void
divascii(char *a, int *na, int *dp, int *bp)
{
int b, d;
Tab *t;
d = *dp;
if(d >= (int)(nelem(tab1)))
d = (int)(nelem(tab1))-1;
t = tab1 + d;
b = t->bp;
if(memcmp(a, t->cmp, t->siz) > 0)
d--;
*dp -= d;
*bp += b;
divby(a, na, b);
}
static void
mulby(char *a, char *p, char *q, int b)
{
int n, c;
n = 0;
*p = 0;
for(;;) {
q--;
if(q < a)
break;
c = *q - '0';
c = (c<<b) + n;
n = c/10;
c -= n*10;
p--;
*p = c + '0';
}
while(n) {
c = n;
n = c/10;
c -= n*10;
p--;
*p = c + '0';
}
}
static Tab tab2[] =
{
{ 1, 1, "" }, /* dp = 0-0 */
{ 3, 3, "125" },
{ 6, 5, "15625" },
{ 9, 7, "1953125" },
{ 13, 10, "1220703125" },
{ 16, 12, "152587890625" },
{ 19, 14, "19073486328125" },
{ 23, 17, "11920928955078125" },
{ 26, 19, "1490116119384765625" },
{ 27, 19, "7450580596923828125" }, /* dp 8-9 */
};
static void
mulascii(char *a, int *na, int *dp, int *bp)
{
char *p;
int d, b;
Tab *t;
d = -*dp;
if(d >= (int)(nelem(tab2)))
d = (int)(nelem(tab2))-1;
t = tab2 + d;
b = t->bp;
if(memcmp(a, t->cmp, t->siz) < 0)
d--;
p = a + *na;
*bp -= b;
*dp += d;
*na += d;
mulby(a, p+d, p, b);
}
static int
xcmp(char *a, char *b)
{
int c1, c2;
while((c1 = *b++) != '\0') {
c2 = *a++;
if(c2 >= 'A' && c2 <= 'Z')
c2 = c2 - 'A' + 'a';
if(c1 != c2)
return 1;
}
return 0;
}
|