1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
#include "mupdf/fitz.h"
#include <zlib.h>
struct ahx
{
fz_output *chain;
int column;
};
static void ahx_write(fz_context *ctx, void *opaque, const void *data, size_t n)
{
static const char tohex[16] = "0123456789ABCDEF";
struct ahx *state = opaque;
const unsigned char *p = data;
while (n-- > 0)
{
int c = *p++;
fz_write_byte(ctx, state->chain, tohex[(c>>4) & 15]);
fz_write_byte(ctx, state->chain, tohex[(c) & 15]);
state->column += 2;
if (state->column == 64)
{
fz_write_byte(ctx, state->chain, '\n');
state->column = 0;
}
}
}
static void ahx_close(fz_context *ctx, void *opaque)
{
struct ahx *state = opaque;
fz_write_byte(ctx, state->chain, '>');
}
static void ahx_drop(fz_context *ctx, void *opaque)
{
struct ahx *state = opaque;
fz_free(ctx, state);
}
fz_output *
fz_new_asciihex_output(fz_context *ctx, fz_output *chain)
{
struct ahx *state = fz_malloc_struct(ctx, struct ahx);
state->chain = chain;
state->column = 0;
return fz_new_output(ctx, 512, state, ahx_write, ahx_close, ahx_drop);
}
struct a85
{
fz_output *chain;
int column;
unsigned int word, n;
};
static void a85_flush(fz_context *ctx, struct a85 *state)
{
unsigned int v1, v2, v3, v4, v5;
v5 = state->word;
v4 = v5 / 85;
v3 = v4 / 85;
v2 = v3 / 85;
v1 = v2 / 85;
if (state->column >= 70)
{
fz_write_byte(ctx, state->chain, '\n');
state->column = 0;
}
if (state->n == 4)
{
if (state->word == 0)
{
fz_write_byte(ctx, state->chain, 'z');
state->column += 1;
}
else
{
fz_write_byte(ctx, state->chain, (v1 % 85) + '!');
fz_write_byte(ctx, state->chain, (v2 % 85) + '!');
fz_write_byte(ctx, state->chain, (v3 % 85) + '!');
fz_write_byte(ctx, state->chain, (v4 % 85) + '!');
fz_write_byte(ctx, state->chain, (v5 % 85) + '!');
state->column += 5;
}
}
else if (state->n == 3)
{
fz_write_byte(ctx, state->chain, (v2 % 85) + '!');
fz_write_byte(ctx, state->chain, (v3 % 85) + '!');
fz_write_byte(ctx, state->chain, (v4 % 85) + '!');
fz_write_byte(ctx, state->chain, (v5 % 85) + '!');
state->column += 4;
}
else if (state->n == 2)
{
fz_write_byte(ctx, state->chain, (v3 % 85) + '!');
fz_write_byte(ctx, state->chain, (v4 % 85) + '!');
fz_write_byte(ctx, state->chain, (v5 % 85) + '!');
state->column += 3;
}
else if (state->n == 1)
{
fz_write_byte(ctx, state->chain, (v4 % 85) + '!');
fz_write_byte(ctx, state->chain, (v5 % 85) + '!');
state->column += 2;
}
state->word = 0;
state->n = 0;
}
static void a85_write(fz_context *ctx, void *opaque, const void *data, size_t n)
{
struct a85 *state = opaque;
const unsigned char *p = data;
while (n-- > 0)
{
unsigned int c = *p++;
if (state->n == 4)
a85_flush(ctx, state);
state->word = (state->word << 8) | c;
state->n++;
}
}
static void a85_close(fz_context *ctx, void *opaque)
{
struct a85 *state = opaque;
a85_flush(ctx, state);
fz_write_byte(ctx, state->chain, '~');
fz_write_byte(ctx, state->chain, '>');
}
static void a85_drop(fz_context *ctx, void *opaque)
{
struct a85 *state = opaque;
fz_free(ctx, state);
}
fz_output *
fz_new_ascii85_output(fz_context *ctx, fz_output *chain)
{
struct a85 *state = fz_malloc_struct(ctx, struct a85);
state->chain = chain;
state->column = 0;
state->word = 0;
state->n = 0;
return fz_new_output(ctx, 512, state, a85_write, a85_close, a85_drop);
}
struct rle
{
fz_output *chain;
int state;
int run;
unsigned char buf[128];
};
enum { ZERO, ONE, DIFF, SAME };
static void rle_flush_same(fz_context *ctx, struct rle *enc)
{
fz_write_byte(ctx, enc->chain, 257 - enc->run);
fz_write_byte(ctx, enc->chain, enc->buf[0]);
}
static void rle_flush_diff(fz_context *ctx, struct rle *enc)
{
fz_write_byte(ctx, enc->chain, enc->run - 1);
fz_write_data(ctx, enc->chain, enc->buf, enc->run);
}
static void rle_write(fz_context *ctx, void *opaque, const void *data, size_t n)
{
struct rle *enc = opaque;
const unsigned char *p = data;
while (n-- > 0)
{
int c = *p++;
switch (enc->state)
{
case ZERO:
enc->state = ONE;
enc->run = 1;
enc->buf[0] = c;
break;
case ONE:
enc->state = DIFF;
enc->run = 2;
enc->buf[1] = c;
break;
case DIFF:
/* Max run length */
if (enc->run == 128)
{
rle_flush_diff(ctx, enc);
enc->state = ONE;
enc->run = 1;
enc->buf[0] = c;
}
/* Run of three same */
else if ((enc->run >= 2) && (c == enc->buf[enc->run-1]) && (c == enc->buf[enc->run-2]))
{
if (enc->run >= 3) {
enc->run -= 2; /* skip last two in previous run */
rle_flush_diff(ctx, enc);
}
enc->state = SAME;
enc->run = 3;
enc->buf[0] = c;
}
else
{
enc->buf[enc->run] = c;
enc->run++;
}
break;
case SAME:
if ((enc->run == 128) || (c != enc->buf[0]))
{
rle_flush_same(ctx, enc);
enc->state = ONE;
enc->run = 1;
enc->buf[0] = c;
}
else
{
enc->run++;
}
}
}
}
static void rle_close(fz_context *ctx, void *opaque)
{
struct rle *enc = opaque;
switch (enc->state)
{
case ZERO: break;
case ONE: rle_flush_diff(ctx, enc); break;
case DIFF: rle_flush_diff(ctx, enc); break;
case SAME: rle_flush_same(ctx, enc); break;
}
fz_write_byte(ctx, enc->chain, 128);
}
static void rle_drop(fz_context *ctx, void *opaque)
{
struct rle *enc = opaque;
fz_free(ctx, enc);
}
fz_output *
fz_new_rle_output(fz_context *ctx, fz_output *chain)
{
struct rle *enc = fz_malloc_struct(ctx, struct rle);
enc->chain = chain;
enc->state = ZERO;
enc->run = 0;
return fz_new_output(ctx, 4096, enc, rle_write, rle_close, rle_drop);
}
struct arc4
{
fz_output *chain;
fz_arc4 arc4;
};
static void arc4_write(fz_context *ctx, void *opaque, const void *data, size_t n)
{
struct arc4 *state = opaque;
const unsigned char *p = data;
unsigned char buffer[256];
while (n > 0)
{
size_t x = (n > sizeof buffer) ? sizeof buffer : n;
fz_arc4_encrypt(&state->arc4, buffer, p, x);
fz_write_data(ctx, state->chain, buffer, x);
p += x;
n -= x;
}
}
static void arc4_drop(fz_context *ctx, void *opaque)
{
fz_free(ctx, opaque);
}
fz_output *
fz_new_arc4_output(fz_context *ctx, fz_output *chain, unsigned char *key, size_t keylen)
{
struct arc4 *state = fz_malloc_struct(ctx, struct arc4);
state->chain = chain;
fz_arc4_init(&state->arc4, key, keylen);
return fz_new_output(ctx, 256, state, arc4_write, NULL, arc4_drop);
}
struct deflate
{
fz_output *chain;
z_stream z;
};
static void *z_alloc(void *ctx, unsigned int count, unsigned int size)
{
return fz_malloc_no_throw(ctx, count * size);
}
static void z_free(void *ctx, void *addr)
{
fz_free(ctx, addr);
}
static void deflate_write(fz_context *ctx, void *opaque, const void *data, size_t n)
{
struct deflate *state = opaque;
unsigned char buffer[32 << 10];
int err;
state->z.next_in = (Bytef*)data;
state->z.avail_in = n;
do
{
state->z.next_out = buffer;
state->z.avail_out = sizeof buffer;
err = deflate(&state->z, Z_NO_FLUSH);
if (err != Z_OK)
fz_throw(ctx, FZ_ERROR_GENERIC, "zlib compression failed: %d", err);
if (state->z.avail_out > 0)
fz_write_data(ctx, state->chain, state->z.next_out, state->z.avail_out);
} while (state->z.avail_out > 0);
}
static void deflate_close(fz_context *ctx, void *opaque)
{
struct deflate *state = opaque;
unsigned char buffer[32 << 10];
int err;
state->z.next_in = NULL;
state->z.avail_in = 0;
do
{
state->z.next_out = buffer;
state->z.avail_out = sizeof buffer;
err = deflate(&state->z, Z_FINISH);
if (state->z.avail_out > 0)
fz_write_data(ctx, state->chain, state->z.next_out, state->z.avail_out);
} while (err == Z_OK);
if (err != Z_STREAM_END)
fz_throw(ctx, FZ_ERROR_GENERIC, "zlib compression failed: %d", err);
}
static void deflate_drop(fz_context *ctx, void *opaque)
{
struct deflate *state = opaque;
(void)deflateEnd(&state->z);
fz_free(ctx, state);
}
fz_output *
fz_new_deflate_output(fz_context *ctx, fz_output *chain, int effort, int raw)
{
int err;
struct deflate *state = fz_malloc_struct(ctx, struct deflate);
state->chain = chain;
state->z.opaque = ctx;
state->z.zalloc = z_alloc;
state->z.zfree = z_free;
err = deflateInit2(&state->z, effort, Z_DEFLATED, raw ? -15 : 15, 8, Z_DEFAULT_STRATEGY);
if (err != Z_OK)
{
(void)deflateEnd(&state->z);
fz_free(ctx, state);
fz_throw(ctx, FZ_ERROR_GENERIC, "zlib deflateInit2 failed: %d", err);
}
return fz_new_output(ctx, 8192, state, deflate_write, deflate_close, deflate_drop);
}
|