1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
#include "mupdf/fitz.h"
/*
Convert IEEE single precison numbers into decimal ASCII strings, while
satisfying the following two properties:
1) Calling strtof or '(float) strtod' on the result must produce the
original float, independent of the rounding mode used by strtof/strtod.
2) Minimize the number of produced decimal digits. E.g. the float 0.7f
should convert to "0.7", not "0.69999999".
To solve this we use a dedicated single precision version of
Florian Loitsch's Grisu2 algorithm. See
http://florian.loitsch.com/publications/dtoa-pldi2010.pdf?attredirects=0
The code below is derived from Loitsch's C code, which
implements the same algorithm for IEEE double precision. See
http://florian.loitsch.com/publications/bench.tar.gz?attredirects=0
*/
/*
Copyright (c) 2009 Florian Loitsch
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
*/
static uint32_t
float_to_uint32(float d)
{
union
{
float d;
uint32_t n;
} tmp;
tmp.d = d;
return tmp.n;
}
typedef struct
{
uint64_t f;
int e;
} diy_fp_t;
#define DIY_SIGNIFICAND_SIZE 64
#define DIY_LEADING_BIT ((uint64_t) 1 << (DIY_SIGNIFICAND_SIZE - 1))
static diy_fp_t
minus(diy_fp_t x, diy_fp_t y)
{
diy_fp_t result = {x.f - y.f, x.e};
assert(x.e == y.e && x.f >= y.f);
return result;
}
static diy_fp_t
multiply(diy_fp_t x, diy_fp_t y)
{
uint64_t a, b, c, d, ac, bc, ad, bd, tmp;
int half = DIY_SIGNIFICAND_SIZE / 2;
diy_fp_t r; uint64_t mask = ((uint64_t) 1 << half) - 1;
a = x.f >> half; b = x.f & mask;
c = y.f >> half; d = y.f & mask;
ac = a * c; bc = b * c; ad = a * d; bd = b * d;
tmp = (bd >> half) + (ad & mask) + (bc & mask);
tmp += ((uint64_t)1U) << (half - 1); /* Round. */
r.f = ac + (ad >> half) + (bc >> half) + (tmp >> half);
r.e = x.e + y.e + half * 2;
return r;
}
#define SP_SIGNIFICAND_SIZE 23
#define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE)
#define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS)
#define SP_EXPONENT_MASK 0x7f800000
#define SP_SIGNIFICAND_MASK 0x7fffff
#define SP_HIDDEN_BIT 0x800000 /* 2^23 */
/* Does not normalize the result. */
static diy_fp_t
float2diy_fp(float d)
{
uint32_t d32 = float_to_uint32(d);
int biased_e = (d32 & SP_EXPONENT_MASK) >> SP_SIGNIFICAND_SIZE;
uint32_t significand = d32 & SP_SIGNIFICAND_MASK;
diy_fp_t res;
if (biased_e != 0)
{
res.f = significand + SP_HIDDEN_BIT;
res.e = biased_e - SP_EXPONENT_BIAS;
}
else
{
res.f = significand;
res.e = SP_MIN_EXPONENT + 1;
}
return res;
}
static diy_fp_t
normalize_boundary(diy_fp_t in)
{
diy_fp_t res = in;
/* The original number could have been a denormal. */
while (! (res.f & (SP_HIDDEN_BIT << 1)))
{
res.f <<= 1;
res.e--;
}
/* Do the final shifts in one go. */
res.f <<= (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2);
res.e = res.e - (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2);
return res;
}
static void
normalized_boundaries(float f, diy_fp_t* lower_ptr, diy_fp_t* upper_ptr)
{
diy_fp_t v = float2diy_fp(f);
diy_fp_t upper, lower;
int significand_is_zero = v.f == SP_HIDDEN_BIT;
upper.f = (v.f << 1) + 1; upper.e = v.e - 1;
upper = normalize_boundary(upper);
if (significand_is_zero)
{
lower.f = (v.f << 2) - 1;
lower.e = v.e - 2;
}
else
{
lower.f = (v.f << 1) - 1;
lower.e = v.e - 1;
}
lower.f <<= lower.e - upper.e;
lower.e = upper.e;
/* Adjust to double boundaries, so that we can also read the numbers with '(float) strtod'. */
upper.f -= 1 << 10;
lower.f += 1 << 10;
*upper_ptr = upper;
*lower_ptr = lower;
}
static int
k_comp(int n)
{
/* Avoid ceil and floating point multiplication for better
* performace and portability. Instead use the approximation
* log10(2) ~ 1233/(2^12). Tests show that this gives the correct
* result for all values of n in the range -500..500. */
int tmp = n + DIY_SIGNIFICAND_SIZE - 1;
int k = (tmp * 1233) / (1 << 12);
return tmp > 0 ? k + 1 : k;
}
/* Cached powers of ten from 10**-37..10**46. Produced using GNU MPFR's mpfr_pow_si. */
/* Significands. */
static uint64_t powers_ten[84] = {
0x881cea14545c7575, 0xaa242499697392d3, 0xd4ad2dbfc3d07788,
0x84ec3c97da624ab5, 0xa6274bbdd0fadd62, 0xcfb11ead453994ba,
0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3e,
0xfd87b5f28300ca0e, 0x9e74d1b791e07e48, 0xc612062576589ddb,
0xf79687aed3eec551, 0x9abe14cd44753b53, 0xc16d9a0095928a27,
0xf1c90080baf72cb1, 0x971da05074da7bef, 0xbce5086492111aeb,
0xec1e4a7db69561a5, 0x9392ee8e921d5d07, 0xb877aa3236a4b449,
0xe69594bec44de15b, 0x901d7cf73ab0acd9, 0xb424dc35095cd80f,
0xe12e13424bb40e13, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
0xdbe6fecebdedd5bf, 0x89705f4136b4a597, 0xabcc77118461cefd,
0xd6bf94d5e57a42bc, 0x8637bd05af6c69b6, 0xa7c5ac471b478423,
0xd1b71758e219652c, 0x83126e978d4fdf3b, 0xa3d70a3d70a3d70a,
0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984,
0xa18f07d736b90be5, 0xc9f2c9cd04674edf, 0xfc6f7c4045812296,
0x9dc5ada82b70b59e, 0xc5371912364ce305, 0xf684df56c3e01bc7,
0x9a130b963a6c115c, 0xc097ce7bc90715b3, 0xf0bdc21abb48db20,
0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
0x92efd1b8d0cf37be, 0xb7abc627050305ae, 0xe596b7b0c643c719,
0x8f7e32ce7bea5c70, 0xb35dbf821ae4f38c, 0xe0352f62a19e306f,
};
/* Exponents. */
static int powers_ten_e[84] = {
-186, -183, -180, -176, -173, -170, -166, -163, -160, -157, -153,
-150, -147, -143, -140, -137, -133, -130, -127, -123, -120, -117,
-113, -110, -107, -103, -100, -97, -93, -90, -87, -83, -80,
-77, -73, -70, -67, -63, -60, -57, -54, -50, -47, -44,
-40, -37, -34, -30, -27, -24, -20, -17, -14, -10, -7,
-4, 0, 3, 6, 10, 13, 16, 20, 23, 26, 30,
33, 36, 39, 43, 46, 49, 53, 56, 59, 63, 66,
69, 73, 76, 79, 83, 86, 89
};
static diy_fp_t
cached_power(int i)
{
diy_fp_t result;
assert (i >= -37 && i <= 46);
result.f = powers_ten[i + 37];
result.e = powers_ten_e[i + 37];
return result;
}
/* Returns buffer length. */
static int
digit_gen_mix_grisu2(diy_fp_t D_upper, diy_fp_t delta, char* buffer, int* K)
{
int kappa;
diy_fp_t one = {(uint64_t) 1 << -D_upper.e, D_upper.e};
unsigned char p1 = D_upper.f >> -one.e;
uint64_t p2 = D_upper.f & (one.f - 1);
unsigned char div = 10;
uint64_t mask = one.f - 1;
int len = 0;
for (kappa = 2; kappa > 0; --kappa)
{
unsigned char digit = p1 / div;
if (digit || len)
buffer[len++] = '0' + digit;
p1 %= div; div /= 10;
if ((((uint64_t) p1) << -one.e) + p2 <= delta.f)
{
*K += kappa - 1;
return len;
}
}
do
{
p2 *= 10;
buffer[len++] = '0' + (p2 >> -one.e);
p2 &= mask;
kappa--;
delta.f *= 10;
}
while (p2 > delta.f);
*K += kappa;
return len;
}
int
fz_grisu(float v, char* buffer, int* K)
{
diy_fp_t w_lower, w_upper, D_upper, D_lower, c_mk, delta;
int length, mk, alpha = -DIY_SIGNIFICAND_SIZE + 4;
normalized_boundaries(v, &w_lower, &w_upper);
mk = k_comp(alpha - w_upper.e - DIY_SIGNIFICAND_SIZE);
c_mk = cached_power(mk);
D_upper = multiply(w_upper, c_mk);
D_lower = multiply(w_lower, c_mk);
D_upper.f--;
D_lower.f++;
delta = minus(D_upper, D_lower);
*K = -mk;
length = digit_gen_mix_grisu2(D_upper, delta, buffer, K);
buffer[length] = 0;
return length;
}
|