1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
|
#include "mupdf/fitz.h"
#include "fitz-imp.h"
#include <assert.h>
#include <string.h>
enum
{
FZ_SEPARATION_DISABLED_RENDER = 3
};
struct fz_separations_s
{
int refs;
int num_separations;
int controllable;
uint32_t state[(2*FZ_MAX_SEPARATIONS + 31) / 32];
fz_colorspace *cs[FZ_MAX_SEPARATIONS];
uint8_t cs_pos[FZ_MAX_SEPARATIONS];
uint32_t rgba[FZ_MAX_SEPARATIONS];
uint32_t cmyk[FZ_MAX_SEPARATIONS];
char *name[FZ_MAX_SEPARATIONS];
};
fz_separations *fz_new_separations(fz_context *ctx, int controllable)
{
fz_separations *sep;
sep = fz_malloc_struct(ctx, fz_separations);
sep->refs = 1;
sep->controllable = controllable;
return sep;
}
fz_separations *fz_keep_separations(fz_context *ctx, fz_separations *sep)
{
return fz_keep_imp(ctx, sep, &sep->refs);
}
void fz_drop_separations(fz_context *ctx, fz_separations *sep)
{
if (fz_drop_imp(ctx, sep, &sep->refs))
{
int i;
for (i = 0; i < sep->num_separations; i++)
{
fz_free(ctx, sep->name[i]);
fz_drop_colorspace(ctx, sep->cs[i]);
}
fz_free(ctx, sep);
}
}
void fz_add_separation(fz_context *ctx, fz_separations *sep, const char *name, fz_colorspace *cs, int colorant)
{
int n;
if (!sep)
fz_throw(ctx, FZ_ERROR_GENERIC, "can't add to non-existent separations");
n = sep->num_separations;
if (n == FZ_MAX_SEPARATIONS)
fz_throw(ctx, FZ_ERROR_GENERIC, "too many separations");
sep->name[n] = fz_strdup(ctx, name);
sep->cs[n] = fz_keep_colorspace(ctx, cs);
sep->cs_pos[n] = colorant;
sep->num_separations++;
}
void fz_add_separation_equivalents(fz_context *ctx, fz_separations *sep, uint32_t rgba, uint32_t cmyk, const char *name)
{
int n;
if (!sep)
fz_throw(ctx, FZ_ERROR_GENERIC, "can't add to non-existent separations");
n = sep->num_separations;
if (n == FZ_MAX_SEPARATIONS)
fz_throw(ctx, FZ_ERROR_GENERIC, "too many separations");
sep->name[n] = fz_strdup(ctx, name);
sep->rgba[n] = rgba;
sep->cmyk[n] = cmyk;
sep->num_separations++;
}
int fz_separations_controllable(fz_context *ctx, const fz_separations *sep)
{
return (!sep || sep->controllable);
}
void fz_set_separation_behavior(fz_context *ctx, fz_separations *sep, int separation, fz_separation_behavior beh)
{
int shift;
fz_separation_behavior old;
if (!sep || separation < 0 || separation >= sep->num_separations)
fz_throw(ctx, FZ_ERROR_GENERIC, "can't control non-existent separation");
if (beh == FZ_SEPARATION_DISABLED && !sep->controllable)
beh = FZ_SEPARATION_DISABLED_RENDER;
shift = ((2*separation) & 31);
separation >>= 4;
old = (sep->state[separation]>>shift) & 3;
if (old == (fz_separation_behavior)FZ_SEPARATION_DISABLED_RENDER)
old = FZ_SEPARATION_DISABLED;
/* If no change, great */
if (old == beh)
return;
sep->state[separation] = (sep->state[separation] & ~(3<<shift)) | (beh<<shift);
/* FIXME: Could only empty images from the store, or maybe only
* images that depend on separations. */
fz_empty_store(ctx);
}
static inline fz_separation_behavior
sep_state(const fz_separations *sep, int i)
{
return (fz_separation_behavior)((sep->state[i>>5]>>((2*i) & 31)) & 3);
}
fz_separation_behavior fz_separation_current_behavior_internal(fz_context *ctx, const fz_separations *sep, int separation)
{
if (!sep || separation < 0 || separation >= sep->num_separations)
fz_throw(ctx, FZ_ERROR_GENERIC, "can't disable non-existent separation");
return sep_state(sep, separation);
}
fz_separation_behavior fz_separation_current_behavior(fz_context *ctx, const fz_separations *sep, int separation)
{
int beh = fz_separation_current_behavior_internal(ctx, sep, separation);
if (beh == FZ_SEPARATION_DISABLED_RENDER)
return FZ_SEPARATION_DISABLED;
return beh;
}
int fz_separations_all_composite(fz_context *ctx, const fz_separations *sep)
{
int i;
if (!sep)
return 1;
for (i = 0; i < (FZ_MAX_SEPARATIONS + 31) / 32; i++)
if (sep_state(sep, i) != FZ_SEPARATION_COMPOSITE)
return 0;
return 1;
}
const char *fz_separation_name(fz_context *ctx, const fz_separations *sep, int separation)
{
if (!sep || separation < 0 || separation >= sep->num_separations)
fz_throw(ctx, FZ_ERROR_GENERIC, "can't access non-existent separation");
return sep->name[separation];
}
int fz_count_separations(fz_context *ctx, const fz_separations *sep)
{
if (!sep)
return 0;
return sep->num_separations;
}
int fz_count_active_separations(fz_context *ctx, const fz_separations *sep)
{
int i, n, c;
if (!sep)
return 0;
n = sep->num_separations;
c = 0;
for (i = 0; i < n; i++)
if (sep_state(sep, i) == FZ_SEPARATION_SPOT)
c++;
return c;
}
fz_separations *fz_clone_separations_for_overprint(fz_context *ctx, fz_separations *sep)
{
int i, j, n, c;
fz_separations *clone;
if (!sep)
return NULL;
n = sep->num_separations;
if (n == 0)
return NULL;
c = 0;
for (i = 0; i < n; i++)
{
fz_separation_behavior state = sep_state(sep, i);
if (state == FZ_SEPARATION_COMPOSITE)
c++;
}
/* If no composites, then we don't need to create a new seps object
* with the composite ones enabled, so just reuse our current object. */
if (c == 0)
return fz_keep_separations(ctx, sep);
/* We need to clone us a separation structure, with all
* the composite separations marked as enabled. */
clone = fz_malloc_struct(ctx, fz_separations);
fz_try(ctx)
{
clone->refs = 1;
clone->controllable = 0;
for (i = 0; i < n; i++)
{
fz_separation_behavior beh = sep_state(sep, i);
if (beh == FZ_SEPARATION_DISABLED)
continue;
j = clone->num_separations++;
if (beh == FZ_SEPARATION_COMPOSITE)
beh = FZ_SEPARATION_SPOT;
fz_set_separation_behavior(ctx, clone, j, beh);
clone->name[j] = sep->name[i] ? fz_strdup(ctx, sep->name[i]) : NULL;
clone->cs[j] = fz_keep_colorspace(ctx, sep->cs[i]);
clone->cs_pos[j] = sep->cs_pos[i];
}
}
fz_catch(ctx)
{
fz_drop_separations(ctx, clone);
fz_rethrow(ctx);
}
return clone;
}
fz_pixmap *
fz_clone_pixmap_area_with_different_seps(fz_context *ctx, fz_pixmap *src, const fz_irect *bbox, fz_colorspace *dcs, fz_separations *dseps, const fz_color_params *color_params, fz_default_colorspaces *default_cs)
{
fz_irect local_bbox;
fz_pixmap *dst;
if (bbox == NULL)
{
local_bbox.x0 = src->x;
local_bbox.y0 = src->y;
local_bbox.x1 = src->x + src->w;
local_bbox.y1 = src->y + src->h;
bbox = &local_bbox;
}
dst = fz_new_pixmap_with_bbox(ctx, dcs, bbox, dseps, src->alpha);
if (src->flags & FZ_PIXMAP_FLAG_INTERPOLATE)
dst->flags |= FZ_PIXMAP_FLAG_INTERPOLATE;
else
dst->flags &= ~FZ_PIXMAP_FLAG_INTERPOLATE;
return fz_copy_pixmap_area_converting_seps(ctx, dst, src, color_params, NULL, default_cs);
}
/*
We assume that we never map from a DeviceN space to another DeviceN space here.
*/
fz_pixmap *
fz_copy_pixmap_area_converting_seps(fz_context *ctx, fz_pixmap *dst, fz_pixmap *src, const fz_color_params *color_params, fz_colorspace *prf, fz_default_colorspaces *default_cs)
{
int dw = dst->w;
int dh = dst->h;
fz_separations *sseps = src->seps;
fz_separations *dseps = dst->seps;
int sseps_n = sseps ? sseps->num_separations : 0;
int dseps_n = dseps ? dseps->num_separations : 0;
int sstride = src->stride;
int dstride = dst->stride;
int sn = src->n;
int dn = dst->n;
int sa = src->alpha;
int da = dst->alpha;
int ss = src->s;
int ds = dst->s;
int sc = sn - ss - sa;
int dc = dn - ds - da;
const unsigned char *sdata = src->samples + sstride * (dst->y - src->y) + (dst->x - src->x) * sn;
unsigned char *ddata = dst->samples;
signed char map[FZ_MAX_COLORS];
int x, y, i, j, k, n;
unsigned char mapped[FZ_MAX_COLORS];
int unmapped = sseps_n;
int src_is_device_n = fz_colorspace_is_device_n(ctx, src->colorspace);
fz_colorspace *proof_cs = (prf == src->colorspace ? NULL : prf);
assert(da == sa);
assert(ss == fz_count_active_separations(ctx, sseps));
assert(ds == fz_count_active_separations(ctx, dseps));
dstride -= dn * dw;
sstride -= sn * dw;
/* Process colorants (and alpha) first */
if (dst->colorspace == src->colorspace && proof_cs == NULL)
{
/* Simple copy */
unsigned char *dd = ddata;
const unsigned char *sd = sdata;
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
for (i = 0; i < dc; i++)
dd[i] = sd[i];
dd += dn;
sd += sn;
if (da)
dd[-1] = sd[-1];
}
dd += dstride;
sd += sstride;
}
}
else if (src_is_device_n)
{
fz_color_converter cc;
/* Init the target pixmap. */
if (!da)
{
/* No alpha to worry about, just clear it. */
fz_clear_pixmap(ctx, dst);
}
else if (fz_colorspace_is_subtractive(ctx, dst->colorspace))
{
/* Subtractive space, so copy the alpha, and set process and spot colors to 0. */
unsigned char *dd = ddata;
const unsigned char *sd = sdata;
int dcs = dc + ds;
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
for (i = 0; i < dcs; i++)
dd[i] = 0;
dd += dn;
sd += sn;
dd[-1] = sd[-1];
}
dd += dstride;
sd += sstride;
}
}
else
{
/* Additive space; tricky case. We need to copy the alpha, and
* init the process colors "full", and the spots to 0. Because
* we are in an additive space, and premultiplied, this means
* setting the process colors to alpha. */
unsigned char *dd = ddata;
const unsigned char *sd = sdata + sn - 1;
int dcs = dc + ds;
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
int a = *sd;
for (i = 0; i < dc; i++)
dd[i] = a;
for (; i < dcs; i++)
dd[i] = 0;
dd[i] = a;
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
/* Now map the colorants down. */
n = fz_colorspace_n(ctx, src->colorspace);
fz_find_color_converter(ctx, &cc, proof_cs, dst->colorspace, src->colorspace, color_params);
fz_try(ctx)
{
unmapped = 0;
for (i = 0; i < n; i++)
{
const char *name = fz_colorspace_colorant(ctx, src->colorspace, i);
mapped[i] = 1;
if (name)
{
if (!strcmp(name, "None"))
continue;
if (!strcmp(name, "All"))
{
int n1 = dn - da;
unsigned char *dd = ddata;
const unsigned char *sd = sdata + i;
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = *sd;
sd += sn;
for (k = 0; k < n1; k++)
dd[k] = v;
dd += dn;
}
dd += dstride;
sd += sstride;
}
continue;
}
for (j = 0; j < dc; j++)
{
const char *dname = fz_colorspace_colorant(ctx, dst->colorspace, j);
if (dname && !strcmp(name, dname))
goto map_device_n_spot;
}
for (j = 0; j < dseps_n; j++)
{
const char *dname = dseps->name[j];
if (dname && !strcmp(name, dname))
{
j += dc;
goto map_device_n_spot;
}
}
}
if (0)
{
unsigned char *dd;
const unsigned char *sd;
map_device_n_spot:
/* Directly map a devicen colorant to a
* component (either process or spot)
* in the destination. */
dd = ddata + j;
sd = sdata + i;
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
*dd = *sd;
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
else
{
unmapped = 1;
mapped[i] = 0;
}
}
if (unmapped)
{
/* The standard spot mapping algorithm assumes that it's reasonable
* to treat the components of deviceN spaces as being orthogonal,
* and to add them together at the end. This avoids a color lookup
* per pixel. The alternative mapping algorithm looks up each
* pixel at a time, and is hence slower. */
#define ALTERNATIVE_SPOT_MAP
#ifndef ALTERNATIVE_SPOT_MAP
for (i = 0; i < n; i++)
{
unsigned char *dd = ddata;
const unsigned char *sd = sdata;
float convert[FZ_MAX_COLORS];
float colors[FZ_MAX_COLORS];
if (mapped[i])
continue;
/* Src component i is not mapped. We need to convert that down. */
memset(colors, 0, sizeof(float) * n);
colors[i] = 1;
cc.convert(ctx, &cc, convert, colors);
if (fz_colorspace_is_subtractive(ctx, dst->colorspace))
{
if (sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
sd += sn;
if (v != 0)
{
int a = dd[-1];
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(dd[j] + v * convert[j], 0, a);
}
dd += dn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
{
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(dd[j] + v * convert[j], 0, 255);
}
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
else
{
if (sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
sd += sn;
if (v != 0)
{
int a = sd[-1];
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(dd[j] - v * (1-convert[j]), 0, a);
}
dd += dn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
{
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(dd[j] - v * (1-convert[j]), 0, 255);
}
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
}
#else
/* If space is subtractive then treat spots like Adobe does in Photoshop.
* Which is to just use an equivalent CMYK value. If we are in an additive
* color space we will need to convert on a pixel-by-pixel basis.
*/
float convert[FZ_MAX_COLORS];
float colors[FZ_MAX_COLORS];
if (fz_colorspace_is_subtractive(ctx, dst->colorspace))
{
for (i = 0; i < n; i++)
{
unsigned char *dd = ddata;
const unsigned char *sd = sdata;
if (mapped[i])
continue;
memset(colors, 0, sizeof(float) * n);
colors[i] = 1;
cc.convert(ctx, &cc, convert, colors);
if (sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
{
unsigned char a = sd[sc];
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(dd[j] + v * convert[j], 0, a);
}
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(dd[j] + v * convert[j], 0, 255);
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
}
else
{
unsigned char *dd = ddata;
const unsigned char *sd = sdata;
if (!sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
for (j = 0; j < n; j++)
colors[j] = mapped[j] ? 0 : sd[j] / 255.0f;
cc.convert(ctx, &cc, convert, colors);
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(255 * convert[j], 0, 255);
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char a = sd[sc];
float inva = 1.0f/a;
for (j = 0; j < n; j++)
colors[j] = mapped[j] ? 0 : sd[j] * inva;
cc.convert(ctx, &cc, convert, colors);
for (j = 0; j < dc; j++)
dd[j] = fz_clampi(a * convert[j], 0, a);
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
#endif
}
}
fz_always(ctx)
fz_drop_color_converter(ctx, &cc);
fz_catch(ctx)
fz_rethrow(ctx);
}
else
{
/* Use a standard pixmap converter to convert the process + alpha. */
fz_pixmap_converter *pc = fz_lookup_pixmap_converter(ctx, dst->colorspace, src->colorspace);
pc(ctx, dst, src, proof_cs, default_cs, NULL, 0);
/* And handle the spots ourselves. First make a map of what spots go where. */
/* We want to set it up so that:
* For each source spot, i, mapped[i] != 0 implies that it maps directly to a dest spot.
* For each dest spot, j, mapped[j] = the source spot that goes there (or -1 if none).
*/
for (i = 0; i < sseps_n; i++)
mapped[i] = 0;
for (i = 0, k = 0; i < dseps_n; i++)
{
const char *name;
int state = sep_state(dseps, i);
if (state != FZ_SEPARATION_SPOT)
continue;
name = dseps->name[i];
if (name == NULL)
continue;
map[k] = -1;
for (j = 0; j < sseps_n; j++)
{
const char *sname;
if (mapped[j])
continue;
if (sep_state(sseps, j) != FZ_SEPARATION_SPOT)
continue;
sname = sseps->name[j];
if (sname && !strcmp(name, sname))
{
map[k] = j;
unmapped--;
mapped[j] = 1;
break;
}
}
k++;
}
if (sa)
map[k] = sseps_n;
/* Now we need to make d[i] = map[i] < 0 : 0 ? s[map[i]] */
if (ds)
{
unsigned char *dd = ddata + dc;
const unsigned char *sd = sdata + sc;
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
for (i = 0; i < ds; i++)
dd[i] = map[i] < 0 ? 0 : sd[map[i]];
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
/* So that's all the process colors, the alpha, and the
* directly mapped spots done. Now, are there any that
* remain unmapped? */
if (unmapped)
{
int m;
/* Still need to handle mapping 'lost' spots down to process colors */
for (i = -1, m = 0; m < sseps_n; m++)
{
float convert[FZ_MAX_COLORS];
if (mapped[m])
continue;
if (fz_separation_current_behavior(ctx, sseps, m) != FZ_SEPARATION_SPOT)
continue;
i++;
/* Src spot m (the i'th one) is not mapped. We need to convert that down. */
fz_separation_equivalent(ctx, sseps, m, color_params, dst->colorspace, proof_cs, convert);
if (fz_colorspace_is_subtractive(ctx, dst->colorspace))
{
if (fz_colorspace_is_subtractive(ctx, src->colorspace))
{
unsigned char *dd = ddata;
const unsigned char *sd = sdata + sc;
if (sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
{
unsigned char a = sd[sc];
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] + v * convert[k], 0, a);
}
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] + v * convert[k], 0, 255);
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
else
{
unsigned char *dd = ddata;
const unsigned char *sd = sdata + sc;
if (sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = 0xff - sd[i];
if (v != 0)
{
unsigned char a = sd[sc];
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] + v * convert[k], 0, a);
}
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = 0xff - sd[i];
if (v != 0)
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] + v * convert[k], 0, 255);
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
}
else
{
for (k = 0; k < dc; k++)
convert[k] = 1-convert[k];
if (fz_colorspace_is_subtractive(ctx, src->colorspace))
{
unsigned char *dd = ddata;
const unsigned char *sd = sdata + sc;
if (sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
{
unsigned char a = sd[sc];
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] - v * convert[k], 0, a);
}
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = sd[i];
if (v != 0)
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] - v * convert[k], 0, 255);
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
else
{
unsigned char *dd = ddata;
const unsigned char *sd = sdata + sc;
if (sa)
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = 0xff - sd[i];
if (v != 0)
{
unsigned char a = sd[sc];
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] - v * convert[k], 0, a);
}
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
else
{
for (y = dh; y > 0; y--)
{
for (x = dw; x > 0; x--)
{
unsigned char v = 0xff - sd[i];
if (v != 0)
for (k = 0; k < dc; k++)
dd[k] = fz_clampi(dd[k] - v * convert[k], 0, 255);
dd += dn;
sd += sn;
}
dd += dstride;
sd += sstride;
}
}
}
}
}
}
}
return dst;
}
void fz_convert_separation_colors(fz_context *ctx, const fz_color_params *color_params, const fz_colorspace *dst_cs, const fz_separations *dst_seps, float *dst_color, const fz_colorspace *src_cs, const float *src_color)
{
int i, j, n, dc, ds, dn, pred;
float remainders[FZ_MAX_COLORS];
int remaining = 0;
assert(dst_cs && src_cs && dst_color && src_color);
assert(fz_colorspace_is_device_n(ctx, src_cs));
dc = fz_colorspace_n(ctx, dst_cs);
ds = (dst_seps == NULL ? 0: dst_seps->num_separations);
dn = dc + ds;
i = 0;
if (!fz_colorspace_is_subtractive(ctx, dst_cs))
for (; i < dc; i++)
dst_color[i] = 1;
for (; i < dn; i++)
dst_color[i] = 0;
n = fz_colorspace_n(ctx, src_cs);
pred = 0;
for (i = 0; i < n; i++)
{
const char *name = fz_colorspace_colorant(ctx, src_cs, i);
if (name == NULL)
continue;
if (i == 0 && !strcmp(name, "All"))
{
/* This is only supposed to happen in separation spaces, not DeviceN */
if (n != 1)
fz_warn(ctx, "All found in DeviceN space");
for (i = 0; i < dn; i++)
dst_color[i] = src_color[0];
break;
}
if (!strcmp(name, "None"))
continue;
/* The most common case is that the colorant we match is the
* one after the one we matched before, so optimise for that. */
for (j = pred; j < ds; j++)
{
const char *dname = dst_seps->name[j];
if (dname && !strcmp(name, dname))
goto found_sep;
}
for (j = 0; j < pred; j++)
{
const char *dname = dst_seps->name[j];
if (dname && !strcmp(name, dname))
goto found_sep;
}
for (j = 0; j < dc; j++)
{
const char *dname = fz_colorspace_colorant(ctx, dst_cs, j);
if (dname && !strcmp(name, dname))
goto found_process;
}
if (0) {
found_sep:
dst_color[j+dc] = src_color[i];
pred = j+1;
}
else if (0)
{
found_process:
dst_color[j] += src_color[i];
}
else
{
if (remaining == 0)
{
memset(remainders, 0, sizeof(float) * n);
remaining = 1;
}
remainders[i] = src_color[i];
}
}
if (remaining)
{
/* There were some spots that didn't copy over */
float converted[FZ_MAX_COLORS];
fz_convert_color(ctx, color_params, NULL, dst_cs, converted, src_cs, remainders);
for (i = 0; i < dc; i++)
dst_color[i] += converted[i];
}
}
void fz_separation_equivalent(fz_context *ctx, const fz_separations *seps, int i, const fz_color_params *color_params, const fz_colorspace *dst_cs, const fz_colorspace *prf, float *convert)
{
float colors[FZ_MAX_COLORS];
if (!seps->cs[i])
{
switch (fz_colorspace_n(ctx, dst_cs))
{
case 3:
convert[0] = (seps->rgba[i] & 0xff)/ 255.0f;
convert[1] = ((seps->rgba[i]>>8) & 0xff)/ 255.0f;
convert[2] = ((seps->rgba[i]>>16) & 0xff)/ 255.0f;
convert[3] = ((seps->rgba[i]>>24) & 0xff)/ 255.0f;
return;
case 4:
convert[0] = (seps->cmyk[i] & 0xff)/ 255.0f;
convert[1] = ((seps->cmyk[i]>>8) & 0xff)/ 255.0f;
convert[2] = ((seps->cmyk[i]>>16) & 0xff)/ 255.0f;
convert[3] = ((seps->cmyk[i]>>24) & 0xff)/ 255.0f;
return;
default:
fz_throw(ctx, FZ_ERROR_GENERIC, "Cannot return equivalent in this colorspace");
}
}
memset(colors, 0, sizeof(float) * fz_colorspace_n(ctx, seps->cs[i]));
colors[seps->cs_pos[i]] = 1;
fz_convert_color(ctx, color_params, prf, dst_cs, convert, seps->cs[i], colors);
}
|