1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
|
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/parser/cpdf_crypto_handler.h"
#include <time.h>
#include <algorithm>
#include <stack>
#include <utility>
#include "core/fdrm/crypto/fx_crypt.h"
#include "core/fpdfapi/edit/cpdf_encryptor.h"
#include "core/fpdfapi/edit/cpdf_flateencoder.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_number.h"
#include "core/fpdfapi/parser/cpdf_object_walker.h"
#include "core/fpdfapi/parser/cpdf_parser.h"
#include "core/fpdfapi/parser/cpdf_security_handler.h"
#include "core/fpdfapi/parser/cpdf_simple_parser.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/cpdf_stream_acc.h"
#include "core/fpdfapi/parser/cpdf_string.h"
namespace {
constexpr char kContentsKey[] = "Contents";
constexpr char kTypeKey[] = "Type";
constexpr char kFTKey[] = "FT";
constexpr char kSignTypeValue[] = "Sig";
} // namespace
// static
bool CPDF_CryptoHandler::IsSignatureDictionary(
const CPDF_Dictionary* dictionary) {
if (!dictionary)
return false;
const CPDF_Object* type_obj = dictionary->GetDirectObjectFor(kTypeKey);
if (!type_obj)
type_obj = dictionary->GetDirectObjectFor(kFTKey);
return type_obj && type_obj->GetString() == kSignTypeValue;
}
void CPDF_CryptoHandler::CryptBlock(bool bEncrypt,
uint32_t objnum,
uint32_t gennum,
const uint8_t* src_buf,
uint32_t src_size,
uint8_t* dest_buf,
uint32_t& dest_size) {
if (m_Cipher == FXCIPHER_NONE) {
memcpy(dest_buf, src_buf, src_size);
return;
}
uint8_t realkey[16];
int realkeylen = 16;
if (m_Cipher != FXCIPHER_AES || m_KeyLen != 32) {
uint8_t key1[32];
PopulateKey(objnum, gennum, key1);
if (m_Cipher == FXCIPHER_AES) {
memcpy(key1 + m_KeyLen + 5, "sAlT", 4);
}
CRYPT_MD5Generate(
key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey);
realkeylen = m_KeyLen + 5;
if (realkeylen > 16) {
realkeylen = 16;
}
}
if (m_Cipher == FXCIPHER_AES) {
CRYPT_AESSetKey(m_pAESContext.get(), 16,
m_KeyLen == 32 ? m_EncryptKey : realkey, m_KeyLen,
bEncrypt);
if (bEncrypt) {
uint8_t iv[16];
for (int i = 0; i < 16; i++) {
iv[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(m_pAESContext.get(), iv);
memcpy(dest_buf, iv, 16);
int nblocks = src_size / 16;
CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + 16, src_buf,
nblocks * 16);
uint8_t padding[16];
memcpy(padding, src_buf + nblocks * 16, src_size % 16);
memset(padding + src_size % 16, 16 - src_size % 16, 16 - src_size % 16);
CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + nblocks * 16 + 16,
padding, 16);
dest_size = 32 + nblocks * 16;
} else {
CRYPT_AESSetIV(m_pAESContext.get(), src_buf);
CRYPT_AESDecrypt(m_pAESContext.get(), dest_buf, src_buf + 16,
src_size - 16);
dest_size = src_size - 16;
dest_size -= dest_buf[dest_size - 1];
}
} else {
ASSERT(dest_size == src_size);
if (dest_buf != src_buf) {
memcpy(dest_buf, src_buf, src_size);
}
CRYPT_ArcFourCryptBlock(dest_buf, dest_size, realkey, realkeylen);
}
}
struct AESCryptContext {
bool m_bIV;
uint32_t m_BlockOffset;
CRYPT_aes_context m_Context;
uint8_t m_Block[16];
};
void* CPDF_CryptoHandler::CryptStart(uint32_t objnum,
uint32_t gennum,
bool bEncrypt) {
if (m_Cipher == FXCIPHER_NONE) {
return this;
}
if (m_Cipher == FXCIPHER_AES && m_KeyLen == 32) {
AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1);
pContext->m_bIV = true;
pContext->m_BlockOffset = 0;
CRYPT_AESSetKey(&pContext->m_Context, 16, m_EncryptKey, 32, bEncrypt);
if (bEncrypt) {
for (int i = 0; i < 16; i++) {
pContext->m_Block[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block);
}
return pContext;
}
uint8_t key1[48];
PopulateKey(objnum, gennum, key1);
if (m_Cipher == FXCIPHER_AES) {
memcpy(key1 + m_KeyLen + 5, "sAlT", 4);
}
uint8_t realkey[16];
CRYPT_MD5Generate(
key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey);
int realkeylen = m_KeyLen + 5;
if (realkeylen > 16) {
realkeylen = 16;
}
if (m_Cipher == FXCIPHER_AES) {
AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1);
pContext->m_bIV = true;
pContext->m_BlockOffset = 0;
CRYPT_AESSetKey(&pContext->m_Context, 16, realkey, 16, bEncrypt);
if (bEncrypt) {
for (int i = 0; i < 16; i++) {
pContext->m_Block[i] = (uint8_t)rand();
}
CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block);
}
return pContext;
}
CRYPT_rc4_context* pContext = FX_Alloc(CRYPT_rc4_context, 1);
CRYPT_ArcFourSetup(pContext, realkey, realkeylen);
return pContext;
}
bool CPDF_CryptoHandler::CryptStream(void* context,
const uint8_t* src_buf,
uint32_t src_size,
CFX_BinaryBuf& dest_buf,
bool bEncrypt) {
if (!context) {
return false;
}
if (m_Cipher == FXCIPHER_NONE) {
dest_buf.AppendBlock(src_buf, src_size);
return true;
}
if (m_Cipher == FXCIPHER_RC4) {
int old_size = dest_buf.GetSize();
dest_buf.AppendBlock(src_buf, src_size);
CRYPT_ArcFourCrypt(static_cast<CRYPT_rc4_context*>(context),
dest_buf.GetBuffer() + old_size, src_size);
return true;
}
AESCryptContext* pContext = static_cast<AESCryptContext*>(context);
if (pContext->m_bIV && bEncrypt) {
dest_buf.AppendBlock(pContext->m_Block, 16);
pContext->m_bIV = false;
}
uint32_t src_off = 0;
uint32_t src_left = src_size;
while (1) {
uint32_t copy_size = 16 - pContext->m_BlockOffset;
if (copy_size > src_left) {
copy_size = src_left;
}
memcpy(pContext->m_Block + pContext->m_BlockOffset, src_buf + src_off,
copy_size);
src_off += copy_size;
src_left -= copy_size;
pContext->m_BlockOffset += copy_size;
if (pContext->m_BlockOffset == 16) {
if (!bEncrypt && pContext->m_bIV) {
CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block);
pContext->m_bIV = false;
pContext->m_BlockOffset = 0;
} else if (src_off < src_size) {
uint8_t block_buf[16];
if (bEncrypt) {
CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block,
16);
} else {
CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block,
16);
}
dest_buf.AppendBlock(block_buf, 16);
pContext->m_BlockOffset = 0;
}
}
if (!src_left) {
break;
}
}
return true;
}
bool CPDF_CryptoHandler::CryptFinish(void* context,
CFX_BinaryBuf& dest_buf,
bool bEncrypt) {
if (!context) {
return false;
}
if (m_Cipher == FXCIPHER_NONE) {
return true;
}
if (m_Cipher == FXCIPHER_RC4) {
FX_Free(context);
return true;
}
auto* pContext = static_cast<AESCryptContext*>(context);
if (bEncrypt) {
uint8_t block_buf[16];
if (pContext->m_BlockOffset == 16) {
CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16);
dest_buf.AppendBlock(block_buf, 16);
pContext->m_BlockOffset = 0;
}
memset(pContext->m_Block + pContext->m_BlockOffset,
(uint8_t)(16 - pContext->m_BlockOffset),
16 - pContext->m_BlockOffset);
CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16);
dest_buf.AppendBlock(block_buf, 16);
} else if (pContext->m_BlockOffset == 16) {
uint8_t block_buf[16];
CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16);
if (block_buf[15] <= 16) {
dest_buf.AppendBlock(block_buf, 16 - block_buf[15]);
}
}
FX_Free(pContext);
return true;
}
ByteString CPDF_CryptoHandler::Decrypt(uint32_t objnum,
uint32_t gennum,
const ByteString& str) {
CFX_BinaryBuf dest_buf;
void* context = DecryptStart(objnum, gennum);
DecryptStream(context, str.raw_str(), str.GetLength(), dest_buf);
DecryptFinish(context, dest_buf);
return ByteString(dest_buf.GetBuffer(), dest_buf.GetSize());
}
void* CPDF_CryptoHandler::DecryptStart(uint32_t objnum, uint32_t gennum) {
return CryptStart(objnum, gennum, false);
}
uint32_t CPDF_CryptoHandler::DecryptGetSize(uint32_t src_size) {
return m_Cipher == FXCIPHER_AES ? src_size - 16 : src_size;
}
bool CPDF_CryptoHandler::IsCipherAES() const {
return m_Cipher == FXCIPHER_AES;
}
std::unique_ptr<CPDF_Object> CPDF_CryptoHandler::DecryptObjectTree(
std::unique_ptr<CPDF_Object> object) {
if (!object)
return nullptr;
struct MayBeSignature {
const CPDF_Dictionary* parent;
CPDF_Object* contents;
};
std::stack<MayBeSignature> may_be_sign_dictionaries;
const uint32_t obj_num = object->GetObjNum();
const uint32_t gen_num = object->GetGenNum();
CPDF_Object* object_to_decrypt = object.get();
while (object_to_decrypt) {
CPDF_NonConstObjectWalker walker(object_to_decrypt);
object_to_decrypt = nullptr;
while (CPDF_Object* child = walker.GetNext()) {
const CPDF_Dictionary* parent_dict =
walker.GetParent() ? walker.GetParent()->GetDict() : nullptr;
if (walker.dictionary_key() == kContentsKey &&
(parent_dict->KeyExist(kTypeKey) || parent_dict->KeyExist(kFTKey))) {
// This object may be contents of signature dictionary.
// But now values of 'Type' and 'FT' of dictionary keys are encrypted,
// and we can not check this.
// Temporary skip it, to prevent signature corruption.
// It will be decrypted on next interations, if this is not contents of
// signature dictionary.
may_be_sign_dictionaries.push(MayBeSignature({parent_dict, child}));
walker.SkipWalkIntoCurrentObject();
continue;
}
// Strings decryption.
if (child->IsString()) {
// TODO(art-snake): Move decryption into the CPDF_String class.
CPDF_String* str = child->AsString();
str->SetString(Decrypt(obj_num, gen_num, str->GetString()));
}
// Stream decryption.
if (child->IsStream()) {
// TODO(art-snake): Move decryption into the CPDF_Stream class.
CPDF_Stream* stream = child->AsStream();
auto stream_access = pdfium::MakeRetain<CPDF_StreamAcc>(stream);
stream_access->LoadAllDataRaw();
if (IsCipherAES() && stream_access->GetSize() < 16) {
stream->SetData(nullptr, 0);
continue;
}
CFX_BinaryBuf decrypted_buf;
decrypted_buf.EstimateSize(DecryptGetSize(stream_access->GetSize()));
void* context = DecryptStart(obj_num, gen_num);
bool decrypt_result =
DecryptStream(context, stream_access->GetData(),
stream_access->GetSize(), decrypted_buf);
decrypt_result &= DecryptFinish(context, decrypted_buf);
if (decrypt_result) {
const uint32_t decrypted_size = decrypted_buf.GetSize();
stream->SetData(decrypted_buf.DetachBuffer(), decrypted_size);
} else {
// Decryption failed, set the stream to empty
stream->SetData(nullptr, 0);
}
}
}
// Signature dictionaries check.
while (!may_be_sign_dictionaries.empty()) {
auto dict_and_contents = std::move(may_be_sign_dictionaries.top());
may_be_sign_dictionaries.pop();
if (!IsSignatureDictionary(dict_and_contents.parent)) {
// This is not signature dictionary. Do decrypt its contents.
object_to_decrypt = dict_and_contents.contents;
break;
}
}
}
return object;
}
bool CPDF_CryptoHandler::DecryptStream(void* context,
const uint8_t* src_buf,
uint32_t src_size,
CFX_BinaryBuf& dest_buf) {
return CryptStream(context, src_buf, src_size, dest_buf, false);
}
bool CPDF_CryptoHandler::DecryptFinish(void* context, CFX_BinaryBuf& dest_buf) {
return CryptFinish(context, dest_buf, false);
}
uint32_t CPDF_CryptoHandler::EncryptGetSize(uint32_t objnum,
uint32_t version,
const uint8_t* src_buf,
uint32_t src_size) {
if (m_Cipher == FXCIPHER_AES) {
return src_size + 32;
}
return src_size;
}
bool CPDF_CryptoHandler::EncryptContent(uint32_t objnum,
uint32_t gennum,
const uint8_t* src_buf,
uint32_t src_size,
uint8_t* dest_buf,
uint32_t& dest_size) {
CryptBlock(true, objnum, gennum, src_buf, src_size, dest_buf, dest_size);
return true;
}
CPDF_CryptoHandler::CPDF_CryptoHandler(int cipher,
const uint8_t* key,
int keylen)
: m_KeyLen(std::min(keylen, 32)), m_Cipher(cipher) {
ASSERT(cipher != FXCIPHER_AES || keylen == 16 || keylen == 24 ||
keylen == 32);
ASSERT(cipher != FXCIPHER_AES2 || keylen == 32);
ASSERT(cipher != FXCIPHER_RC4 || (keylen >= 5 && keylen <= 16));
if (m_Cipher != FXCIPHER_NONE)
memcpy(m_EncryptKey, key, m_KeyLen);
if (m_Cipher == FXCIPHER_AES)
m_pAESContext.reset(FX_Alloc(CRYPT_aes_context, 1));
}
CPDF_CryptoHandler::~CPDF_CryptoHandler() {}
void CPDF_CryptoHandler::PopulateKey(uint32_t objnum,
uint32_t gennum,
uint8_t* key) {
memcpy(key, m_EncryptKey, m_KeyLen);
key[m_KeyLen + 0] = (uint8_t)objnum;
key[m_KeyLen + 1] = (uint8_t)(objnum >> 8);
key[m_KeyLen + 2] = (uint8_t)(objnum >> 16);
key[m_KeyLen + 3] = (uint8_t)gennum;
key[m_KeyLen + 4] = (uint8_t)(gennum >> 8);
}
|