1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
// Copyright 2017 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CORE_FXCRT_CFX_UNOWNED_PTR_H_
#define CORE_FXCRT_CFX_UNOWNED_PTR_H_
#include <functional>
#include <memory>
#include <type_traits>
#include <utility>
// CFX_UnownedPtr is a smart pointer class that behaves very much like a
// standard C-style pointer. The advantages of using it over raw
// pointers are:
//
// 1. It documents the nature of the pointer with no need to add a comment
// explaining that is it // Not owned. Additionally, an attempt to delete
// an unowned ptr will fail to compile rather than silently succeeding,
// since it is a class and not a raw pointer.
//
// 2. When built for a memory tool like ASAN, the class provides a destructor
// which checks that the object being pointed to is still alive.
//
// Hence, when using UnownedPtr, no dangling pointers are ever permitted,
// even if they are not de-referenced after becoming dangling. The style of
// programming required is that the lifetime an object containing an
// UnownedPtr must be strictly less than the object to which it points.
//
// The same checks are also performed at assignment time to prove that the
// old value was not a dangling pointer, either.
//
// The array indexing operation [] is not supported on an unowned ptr,
// because an unowned ptr expresses a one to one relationship with some
// other heap object.
template <class T>
class CFX_UnownedPtr {
public:
CFX_UnownedPtr() {}
CFX_UnownedPtr(const CFX_UnownedPtr& that) : CFX_UnownedPtr(that.Get()) {}
template <typename U>
explicit CFX_UnownedPtr(U* pObj) : m_pObj(pObj) {}
// Deliberately implicit to allow returning nullptrs.
// NOLINTNEXTLINE(runtime/explicit)
CFX_UnownedPtr(std::nullptr_t ptr) {}
~CFX_UnownedPtr() { ProbeForLowSeverityLifetimeIssue(); }
CFX_UnownedPtr& operator=(T* that) {
ProbeForLowSeverityLifetimeIssue();
m_pObj = that;
return *this;
}
CFX_UnownedPtr& operator=(const CFX_UnownedPtr& that) {
ProbeForLowSeverityLifetimeIssue();
if (*this != that)
m_pObj = that.Get();
return *this;
}
bool operator==(const CFX_UnownedPtr& that) const {
return Get() == that.Get();
}
bool operator!=(const CFX_UnownedPtr& that) const { return !(*this == that); }
bool operator<(const CFX_UnownedPtr& that) const {
return std::less<T*>()(Get(), that.Get());
}
template <typename U>
bool operator==(const U* that) const {
return Get() == that;
}
template <typename U>
bool operator!=(const U* that) const {
return !(*this == that);
}
T* Get() const { return m_pObj; }
T* Release() {
ProbeForLowSeverityLifetimeIssue();
T* pTemp = nullptr;
std::swap(pTemp, m_pObj);
return pTemp;
}
explicit operator bool() const { return !!m_pObj; }
T& operator*() const { return *m_pObj; }
T* operator->() const { return m_pObj; }
private:
inline void ProbeForLowSeverityLifetimeIssue() {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
if (m_pObj)
reinterpret_cast<const volatile uint8_t*>(m_pObj)[0];
#endif
}
T* m_pObj = nullptr;
};
template <typename T, typename U>
inline bool operator==(const U* lhs, const CFX_UnownedPtr<T>& rhs) {
return rhs == lhs;
}
template <typename T, typename U>
inline bool operator!=(const U* lhs, const CFX_UnownedPtr<T>& rhs) {
return rhs != lhs;
}
#endif // CORE_FXCRT_CFX_UNOWNED_PTR_H_
|