1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
|
//*************************************************************************
//*************************************************************************
//** **
//** (C)Copyright 1985-2008, American Megatrends, Inc. **
//** **
//** All Rights Reserved. **
//** **
//** 5555 Oakbrook Parkway, Suite 200, Norcross, GA 30093 **
//** **
//** Phone: (770)-246-8600 **
//** **
//*************************************************************************
//*************************************************************************
//**********************************************************************
// $Header: /Alaska/SOURCE/Modules/SMM/SMMDispatcher/SmmMemoryManager.c 12 4/22/10 4:39p Markw $
//
// $Revision: 12 $
//
// $Date: 4/22/10 4:39p $
//**********************************************************************
// Revision History
// ----------------
// $Log: /Alaska/SOURCE/Modules/SMM/SMMDispatcher/SmmMemoryManager.c $
//
// 12 4/22/10 4:39p Markw
// Update to build with /w4 flag.
//
// 11 5/08/09 10:56a Markw
// Header updates.
//
// 10 12/16/08 2:34a Iminglin
// (EIP17767) The function value of FindFreeSpace, FindFreeAddress,
// Allocate for compliance.
//
// 9 10/29/07 10:58a Markw
// Smm Thunk:
// * Code and data different segments.
// * Code position independent.
// * Switch for CSM for code and EBDA for data.
//
// 8 10/24/07 12:02p Markw
// SMM Thunk code position independent. Data in a separate segment than
// code in Smm Thunk.
//
// 7 7/25/07 2:11p Markw
// Exclude A000 region if needed.
//
// 6 8/24/06 7:13p Felixp
//
// 5 8/24/06 7:00p Felixp
// x64 support (warnings/errors fixed)
//
// 4 4/25/06 6:25p Markw
//
// 3 4/21/06 5:14p Markw
//
// 2 7/19/05 6:09p Markw
// Add support for managing A&B SMM segments.
//
// 1 1/28/05 4:32p Sivagarn
// SMM Dispatcher Component - Initial check in
//
//
//**********************************************************************
//<AMI_FHDR_START>
//---------------------------------------------------------------------------
//
// Name: SmmMemoryManager.c
//
// Description: Provides functions to manage SMM memory. Allocate and Free memory.
//
//---------------------------------------------------------------------------
//<AMI_FHDR_END>
#include <efi.h>
#include <AmiDxeLib.h>
#include "SmmPrivateShared.h"
#define NUM_MEM_DESCRIPTORS 30 //<--Number of descriptors before in a table. If more descriptors needed, a new table is created.
typedef struct _MEMORY_DESCRIPTOR MEMORY_DESCRIPTOR;
typedef struct _MEMORY_RESERVED_TABLE MEMORY_RESERVED_TABLE;
//<AMI_SHDR_START>
//---------------------------------------------------------------------------
//
// Name: MEMORY_DESCRIPTOR
//
// Description:
// Each descriptor contains the Base and end + 1 of each
// memory allocation. The list is sorted from lowest to highest.
// Last linked descriptor has a Link = 0.
// Unused descriptors have links = 0xffffffff.
//
// Fields: Name Type Description
// ------------------------------------------------------------
// MemBase UINT8* Base address of allocated memory.
// MemEnd UINT8* End address + 1 of allocated memory.
// Link MEMORY_DESCRIPTOR* Link to next Descriptor.
//
//---------------------------------------------------------------------------
//<AMI_SHDR_END>
struct _MEMORY_DESCRIPTOR
{
UINT8 *MemBase;
UINT8 *MemEnd;
MEMORY_DESCRIPTOR *Link;
};
//<AMI_SHDR_START>
//---------------------------------------------------------------------------
//
// Name: MEMORY_RESERVED_TABLE
//
// Description:
// Table stores memory descriptors. If runs out of descriptors,
// additional tables will be linked. New tables can not be removed.
// Unused descriptors Link will be 0xffffffff.
// Last table Link = 0.
//
//
// Fields: Name Type Description
// ------------------------------------------------------------
// MemDesc MEMORY_DESCRIPTOR[] Array of memory descriptors.
// MemNextTable MEMORY_DESCRIPTOR A descriptor used if a new table is created.
// NumMemDescUsed UINTN Number of descriptors used.
// Link MEMORY_RESERVED_TABLE* Link to next table.
//
//---------------------------------------------------------------------------
//<AMI_SHDR_END>
struct _MEMORY_RESERVED_TABLE
{
MEMORY_DESCRIPTOR MemDesc[NUM_MEM_DESCRIPTORS];
MEMORY_DESCRIPTOR MemNextTable;
UINTN NumMemDescUsed;
MEMORY_RESERVED_TABLE *Link;
};
//Default descriptor for unused descriptor.
MEMORY_DESCRIPTOR gDefaultMemoryDescriptor = {0,0,(MEMORY_DESCRIPTOR*)(UINTN)0xffffffff};
//Default descriptor for next table.
MEMORY_DESCRIPTOR gDefaultMemoryDescriptor2 = {0,0,0};
UINT8 *gSmmMemBase;
UINT8 *gSmmMemEnd; //Top of SMM memory + 1.
MEMORY_RESERVED_TABLE gTableHead; //First memory table.
MEMORY_DESCRIPTOR *gDescHead; //Pointer to first descriptor. (Lowest memory address.)
BOOLEAN ABSegPageAlloc[32] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //ASEG.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //BSEG.
};
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: Align8
//
// Description: Align the address to nearest 8 byte alignment.
//
// Input:
// UINTN Value - Value to Align.
//
// Output:
// UINTN - Aligned Value.
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
UINTN Align8(UINTN Value)
{
return (Value + 7) & ~7;
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: Align2n
//
// Description: Align the address to nearest specified 2n alignment.
// If the alignment isn't 2^n-1, then result will be invalid.
//
// Input:
// UINT8 *Value - Pointer to value to Align.
// UINTN Alignment (This the 2n Alignment - 1. Example Alignment = 31, for 32 byte alignment.
//
// Output:
// UINT8* - Aligned Value.
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
UINT8* Align2n(UINT8 *Value,UINTN Alignment)
{
return (UINT8*)(((UINTN)Value+Alignment) & ~Alignment);
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: ConstructMemoryReservedTable
//
// Description: Intitialize the MEMORY_RESERVED_TABLE.
//
// Input:
// MEMORY_RESERVED_TABLE *Table
//
// Output:
// VOID
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
VOID ConstructMemoryReservedTable(MEMORY_RESERVED_TABLE *Table)
{
UINTN i;
for(i=0;i<NUM_MEM_DESCRIPTORS;++i) Table->MemDesc[i] = gDefaultMemoryDescriptor;
Table->MemNextTable = gDefaultMemoryDescriptor2;
Table->Link = 0;
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: FindFreeSpace
//
// Description: Find a gap of free memory of a size and possibly of an alignment. This returns
// the preceding memory descriptor. If no gaps are found, the last memory descriptor
// is returned.
//
// Input:
// UINTN Size - Size of free space.
// UINTN Alignment OPTIONAL - This the 2n Alignment - 1. Example Alignment = 31, for 32 byte alignment.
//
// Output:
// MEMORY_DESCRIPTOR *
//
// Notes:
// Here is the control flow of this function:
// 1. Start with the first descriptor.
// 2. Evaluate the difference (empty space) between the
// (a) the base of address of the next descriptor and (b) the
// aligned End address of the current descriptor.
// 3. If the difference is greater or equal to the requested size,
// return the link.
// 4. Repeat 2-4, until out of descriptors.
// 5. Return the last descriptor.
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
MEMORY_DESCRIPTOR *FindFreeSpace(
IN UINTN Size,
IN UINTN Alignment OPTIONAL)
{
MEMORY_DESCRIPTOR *Link;
UINT8 *FreeStart;
UINT8 *UsedNext;
if (!Size) return NULL;
//Find the preceding descriptor of a memory gap of the specified size (and alignment).
for (Link = gDescHead; Link->Link; Link = Link->Link)
{
UINTN EmptySpace;
FreeStart = Link->MemEnd; //Beginning of possible gap.
if (Alignment) FreeStart = Align2n(FreeStart,Alignment); //Align possible gap to requested alignment.
UsedNext = Link->Link->MemBase; //Find end of possible gap.
EmptySpace = (UINTN)UsedNext - (UINTN)FreeStart; //Gap size (may be negative because of alligned start)
if ((INTN)EmptySpace >= (INTN) Size) return Link; //If gap size is larger or equal requested size,
// return link of descriptor preceding link.
}
return Link; //Out of descriptors, return last Link.
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: FindAddress
//
// Description: Find a gap of free memory of an specific Address and a size.
// If part of the space is taken, return 0.
// If the space is found, return the preceding memory descriptor,
// or the last memory descriptor.
//
// Input:
// UINTN Size - Size of memory.
// UINTN Alignment - This the 2n Alignment - 1. Example Alignment = 31, for 32 byte alignment.
//
// Output:
// MEMORY_DESCRIPTOR * - 0 if the address range is taken.
// - not zero, if gap is found, or last link.
//
// Notes:
// Here is the control flow of this function:
// 1. Start with the first descriptor.
// 2. If the specifed address is in the descriptor, it is taken return 0.
// 3. If the specified address is in the gap after the descriptor,
// if the gap is big enough, return the preceding link, otherwise return 0.
// 4. Repeat steps 2-4 until iterated all the descriptors.
// 5. Return the last descriptor.
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
MEMORY_DESCRIPTOR *FindFreeAddress(UINT8 *Address, UINTN Size)
{
MEMORY_DESCRIPTOR *Link;
UINT8 *FreeStart;
UINT8 *UsedNext;
if (!Size) return NULL;
for(Link = gDescHead; Link->Link; Link = Link->Link)
{
UINTN EmptySpace;
FreeStart = Link->MemEnd;
UsedNext = Link->Link->MemBase;
if (Address >= Link->MemBase && Address < FreeStart) return NULL; //Space taken, if address is in the descriptor.
if (Address >= FreeStart && Address <= UsedNext ) { //Is address in the, gap after the descriptor.
//UINTN typecasts used instead of UINT32, so complier won't give warning.
EmptySpace = (UINTN)UsedNext - (UINTN)Address;
if ((INTN)EmptySpace >= (INTN) Size) return Link; //If enough space in gap, return Link
return NULL; //Space not available.
}
}
return Link; //Out of descriptors, return last Link.
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: GetEmptyDescriptor
//
// Description: Find an unused memory descriptor in the tables.
//
// Input: VOID
//
// Output:
// MEMORY_DESCRIPTOR * - 0 if can not allocate a new descriptor.
// - Empty descriptor.
//
// Notes:
// Here is the control flow of this function:
// 1. Find a table with empty descriptors.
// 2. If a table is not found with an empty descriptor, go to step 5.
// ---Found table with an empty descriptor---
// 3. Search descriptor array for an unused descriptors (Link = 0xffffffff)
// 4. Return the descriptor.
// ---Did not find table with an empty descriptor---
// 5. Search memory descriptors for free space for a new table.
// 6. Check if last descriptor and enough free space at end, if not return 0.
// 7. Add a new memory table descriptor at the end of the returned descriptor.
// 8. Add new table link.
// 9. Construct a new table.
// 10. Return the first descriptor.
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
MEMORY_DESCRIPTOR * GetEmptyDescriptor()
{
MEMORY_RESERVED_TABLE *Table = &gTableHead;
MEMORY_RESERVED_TABLE *PrevTable = NULL;
MEMORY_DESCRIPTOR *MemDesc;
UINTN i;
//Find a table with an unused descriptor.
while (Table && (Table->NumMemDescUsed == NUM_MEM_DESCRIPTORS)) //If table full, find next descriptor.
{
PrevTable = Table; //Keep track of last table, in case we need to create a new one.
Table = Table->Link;
}
if (Table) //Found table.
{
for(i=0;i<NUM_MEM_DESCRIPTORS;++i)
{
if (Table->MemDesc[i].Link == (MEMORY_DESCRIPTOR*)(UINTN)0xffffffff) //Search for empty descriptor
{
++Table->NumMemDescUsed;
return &Table->MemDesc[i]; //Return empty descriptor.
}
} //Will not exit from this loop. An empty descriptor is guaranteed since NumMemDescUsed isn't the max.
}
//No more empty descriptors. Create a new table
MemDesc = FindFreeSpace(sizeof(MEMORY_RESERVED_TABLE),0); //Find free memory.
//This is the address of the new table if there is space available for the table. The table doesn't exist yet.
Table = (MEMORY_RESERVED_TABLE*) MemDesc->MemEnd;
if (!MemDesc->Link) { //If end of descriptors, check if enough space for table.
if ((UINT8*) Table + Align8(sizeof(MEMORY_RESERVED_TABLE)) > gSmmMemEnd) return 0; //If out of space
}
PrevTable->MemNextTable.Link = MemDesc->Link; //Add new table descriptor.
MemDesc->Link = &PrevTable->MemNextTable;
PrevTable->MemNextTable.MemBase = (UINT8*) Table; //Fill in table descriptor
PrevTable->MemNextTable.MemEnd = (UINT8*) Table + Align8(sizeof(MEMORY_RESERVED_TABLE));
PrevTable->Link = Table; //Add table end of previous table link.
ConstructMemoryReservedTable(Table); //Fill in table with default values.
Table->NumMemDescUsed = 1; //1 descriptor is being allocated.
return &Table->MemDesc[0]; //Return first descriptor.
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: RemoveDescriptor
//
// Description: Find an unused memory descriptor in the tables.
//
// Input: MEMORY_DESCRIPTOR * Descriptor - Descriptor to free.
//
// Output: VOID
//
// Notes:
// Here is the control flow of this function:
// 1. Start with first table.
// 2. Check each table's descriptor array for the descriptor to be removed.
// 3. If descriptor not found go to step 7.
// ---Descriptor found---
// 4. Replace the Link with 0xffffffff.
// 5. Reduce number of descripors being used.
// 6. return.
// ---Descriptor not found---
// 7. Repeat for next table steps 2-7 until last table.
// 8. Return
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
VOID RemoveDescriptor(MEMORY_DESCRIPTOR * Descriptor)
{
MEMORY_RESERVED_TABLE *Table;
UINTN i;
for (Table = &gTableHead; Table; Table = Table->Link)
{
if (Table->NumMemDescUsed==0) continue;
for(i=0; i < NUM_MEM_DESCRIPTORS; ++i)
{
if (&Table->MemDesc[i] == Descriptor)
{
Table->MemDesc[i].Link = (MEMORY_DESCRIPTOR*)(UINTN)0xffffffff;
--Table->NumMemDescUsed;
return;
}
}
}
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: Allocate
//
// Description:
// Allocate a memory. Caller may specify either a specific address
// or alignment, or neither. Alignment is a minimum of 8 bytes.
//
// Input:
// IN VOID *Address OPTIONAL - If caller wants to specify a specific address (Alignment is ignored).
// IN UINTN Size - Size of allocation.
// UINTN Alignment OPTIONAL - Specific alignment, if required. An address must not be given.
// If alignment is set to 0, then alignment is 8 bytes. (Required by SMM spec.)
//
// Output:
// VOID * - Memory allocated start address.
//
// Notes:
// Here is the control flow of this function:
// 1. If no size requested return 0.
// 2. Align Size up to the nearest 8 bytes.
// 3. Get an empty descriptor. If none, return 0.
// 4. If Address is given, set BaseStart to address.
// If not aligned on 8 byte boundary, remove descriptor and return 0.
// 5. Otherwise, set BaseStart to gSmmMemBase and
// align if and to the given alignment. (Bottom of SMM.)
// 6. If Size requested is greater than the Smm memory region,
// remove descriptor and return 0.
// 7. If no memory is previously allocated, setup descriptor, and point to it from gDescHead.
// (Baseaddress is either the Address requested or beggining of Smm RAM.) Return address.
// 8. Otherwise if requested memory base is lower than the base pointed by gDescHead or
// gap between start of smm ram and memory base pointed to by gDescHead is larger than
// the size requested is available,
// fill in memory descriptor, and add it in front of gDescHead, replacing gDescHead. Return Address.
// 9. Otherwise, if address address, find descriptor preceding the Address requested.
// 10. If size requested, find the descriptor preceding the gap >= Size requested.
// 11. If last descriptor, if not enough space left, remove descriptor, and return 0.
// 12. Fill in descriptor. Return Address.
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
void * Allocate(
IN VOID *Address OPTIONAL,
IN UINTN Size,
UINTN Alignment OPTIONAL
)
{
MEMORY_DESCRIPTOR *EmptyDesc = NULL;
MEMORY_DESCRIPTOR *FreeSpaceDesc;
UINT8 *BaseStart;
if (!Size) return NULL;
Size = Align8(Size); //Minimum size requested is 8 bytes.
EmptyDesc = GetEmptyDescriptor();
if (!EmptyDesc){
return NULL; //Return if out of descriptors.
}
if (Address)
{
if ((UINTN)Address != Align8((UINTN)Address)) {RemoveDescriptor(EmptyDesc);return 0;} //Address must be 8 byte aligned.
BaseStart = Address;
} else {
BaseStart = gSmmMemBase;
if (Alignment) BaseStart = Align2n(BaseStart,Alignment);
}
if (Size > (UINTN)(gSmmMemEnd - BaseStart)) { //If Smm Memory is smaller than requested, return error.
RemoveDescriptor(EmptyDesc);
return NULL;
}
if (!gDescHead) //True if no previous allocated memory.
{
EmptyDesc->MemBase = BaseStart;
EmptyDesc->Link = 0;
gDescHead = EmptyDesc;
//else if is true if requested memory base or gap larger than the size requested is available.
} else if (((INTN) gDescHead->MemBase - (INTN)BaseStart) >= (INTN) Size) {//Insert before gDescHead;
EmptyDesc->MemBase=BaseStart;
EmptyDesc->Link = gDescHead;
gDescHead = EmptyDesc;
//else is true if memory base is more than
} else {
if (Address)
{
FreeSpaceDesc = FindFreeAddress(Address,Size);
if (!FreeSpaceDesc)
{
RemoveDescriptor(EmptyDesc);
return NULL;
}
BaseStart = Address;
} else {
FreeSpaceDesc = FindFreeSpace(Size,Alignment);
BaseStart = FreeSpaceDesc->MemEnd;
if (Alignment) BaseStart = Align2n(BaseStart,Alignment);
}
if(!FreeSpaceDesc->Link && (UINTN)(gSmmMemEnd - BaseStart) < Size)
{ //Last Link and not enough room.
RemoveDescriptor(EmptyDesc);
return NULL;
}
EmptyDesc->MemBase = BaseStart;
EmptyDesc->Link = FreeSpaceDesc->Link;
FreeSpaceDesc->Link = EmptyDesc;
}
EmptyDesc->MemEnd = EmptyDesc->MemBase + Size;
return EmptyDesc->MemBase;
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: Free
//
// Description: Free an allocated buffer.
//
// Input:
// IN VOID *Buffer - Allocation to free.
//
// Output:
// BOOLEAN - TRUE if buffer freed.
//
// Notes:
// Here is the control flow of this function:
// 1. If no allocations, return FALSE.
// 2. If Buffer to free is gDescHead, set gDescHead to next Link, remove decriptor, and return TRUE.
// 3. Search link list for buffer.
// 4. If not found, return FALSE.
// 5. Set previous link of buffer to link after buffer.
// 6. Remove Descriptor.
// 7. Return TRUE.
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
BOOLEAN Free(VOID *Buffer)
{
MEMORY_DESCRIPTOR *Link;
MEMORY_DESCRIPTOR *Prev;
if (!gDescHead) return FALSE;
if (gDescHead->MemBase == (UINT8*)Buffer)
{
Link = gDescHead;
gDescHead = gDescHead->Link;
RemoveDescriptor(Link);
return TRUE;
}
Prev = gDescHead; Link = gDescHead->Link;
while(Link)
{
if (Link->MemBase == Buffer)
{
Prev->Link = Link->Link;
RemoveDescriptor(Link);
return TRUE;
}
Prev = Link;
Link = Link->Link;
}
return FALSE;
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: Free4kPages
//
// Description: Free pages from buffer.
//
// Input:
// IN VOID *StartAddress - Pages to free.
// IN UINTN Pages - # of 4k pages.
//
// Output:
// BOOLEAN - TRUE if buffer freed.
//
// Notes:
// Here is the control flow of this function:
// 1. If End Address is not greater than 4G, return FALSE.
// 2. If StartAddress is not aligned 4k, return FALSE.
// 3. If no allocations, return FALSE.
// 4. Search for a descriptor with the StartAddress is allocated.
// 5. If descriptor not found, return FALSE.
// 6. Search for a descriptor with the EndAddress is allocated. These criteria must be met which searching.
// * Allocation size of each descriptor must be 4k pages, otherwise return FALSE.
// * End address of descriptor must match base address of next descriptor (no free space), otherwise return FALSE.
// 7. If descriptor not found, return FALSE.
// 8. If Start and End descriptors are not the same go to step 13.
// -----Start and End Descriptor match exactly.----
// 9. If Base and End descriptor match exactly, remove the descriptor from the list.
// 10. If only Start Address matches exactly, free that space by setting the start address to the End Address.
// 11. If only the End Address matches exactly, move the end address to Start Address.
// Note: the end address of the descriptor is not allocated.
// 12. return TRUE.
// ----Start and End Descriptors are different descriptors.----
// 13. If Base address of the Start Descriptor, adjust its end address to the space, and
// move the Start Descriptor to the next descriptor.
// 14. Free the descriptors up till the end descriptor.
// 15. If the End Descriptor's End address doesn match the end address to free,
// set the base address to the end address, to free the space.
// 16. Otherwise, remove the end descriptor.
// 17. Return True.
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
BOOLEAN Free4kPages(VOID *StartAddress,UINTN Pages)
{
MEMORY_DESCRIPTOR *StartDesc,*EndDesc,*PrevStart = NULL,*Link,*Link2;
UINT8* EndAddress = (UINT8*) StartAddress + 4096 * Pages;
if (EndAddress < (UINT8*)StartAddress) return FALSE; //If Endaddress > 4G.
if (StartAddress != Align2n(StartAddress,4095)) return FALSE; //Must be align 4k.
//--------Find Beginning and End of Descriptors to adjust--------
if (!gDescHead) return FALSE;
for (StartDesc = gDescHead; StartDesc; StartDesc = StartDesc->Link)
{
if ((UINT8*)StartAddress >= StartDesc->MemBase && (UINT8*)StartAddress < StartDesc->MemEnd) break;
PrevStart = StartDesc;
}
if (!StartDesc) return FALSE;
EndDesc = StartDesc;
for (;;)
{
if ((UINT8*)(EndDesc->MemEnd - EndDesc->MemBase) != Align2n((UINT8*)(EndDesc->MemEnd - EndDesc->MemBase),4095))
return FALSE; //Size must be multiple of 4k.
if (EndAddress >= EndDesc->MemBase && EndAddress <= EndDesc->MemEnd) break;
if (!EndDesc->Link) return FALSE;
if (EndDesc->MemEnd != EndDesc->Link->MemBase) return FALSE; //Gap of unallocated space in region to free.
EndDesc=EndDesc->Link;
}
//--------Adjust Descriptors, Removing unused ones--------
if (StartDesc == EndDesc) //If true, range only affects 1 descriptor.
{
if (StartAddress == StartDesc->MemBase)
{
if (EndAddress == StartDesc->MemEnd) //If descriptor matches address exactly, free descriptor.
{
if (StartDesc == gDescHead) gDescHead = StartDesc->Link;
else PrevStart->Link = StartDesc->Link;
RemoveDescriptor(StartDesc);
return TRUE;
}
StartDesc->MemBase = EndAddress; //Start address matches, change start address.
return TRUE;
}
StartDesc->MemEnd = StartAddress; //If End address matches, change End address.
return TRUE;
}
//Range affects multiple descriptors.
if (StartAddress != StartDesc->MemBase)
{
StartDesc->MemEnd = StartAddress;
PrevStart = StartDesc;
StartDesc = StartDesc->Link; //Don't delete this descriptor, since it has been adjusted.
}
//Remove descriptors in the middle before End.
if (StartDesc == gDescHead) gDescHead = EndDesc;
else PrevStart->Link = EndDesc;
for (Link = StartDesc; Link != EndDesc; Link = Link2)
{
Link2 = Link->Link;
RemoveDescriptor(Link); //Remove Descriptors in between.
}
//If end address matches, free descriptor, otherwise adjust end address.
if (EndAddress != EndDesc->MemEnd)
{
EndDesc->MemBase = EndAddress;
} else {
if (EndDesc==gDescHead) gDescHead = EndDesc->Link;
else PrevStart->Link = EndDesc->Link;
RemoveDescriptor(EndDesc);
}
return TRUE;
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: AllocateABSegPages
//
// Description: Allocate SMM 4k pages of memory in A or B segment.
//
// Input:
// IN EFI_ALLOCATE_TYPE Type
// IN UINTN NumberOfPages
// IN OUT EFI_PHYSICAL_ADDRESS *Memory
//
// Output:
// EFI_STATUS
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
EFI_STATUS AllocateABSegPages(
IN EFI_ALLOCATE_TYPE Type,
IN UINTN NumberOfPages,
IN OUT EFI_PHYSICAL_ADDRESS *Memory
)
{
UINTN i;
UINT8 FreePageCount;
UINTN StartPage, EndPage;
UINT32 MaxAddress;
VOID **pMemory32 = (VOID**) Memory;
UINT32 Memory32 = (UINT32)(UINTN)*pMemory32;
//Only supported types.
if (Type != AllocateMaxAddress && Type != AllocateAddress)
return EFI_INVALID_PARAMETER;
if (Memory32 < 0xa0000) return EFI_NOT_FOUND;
if (Type == AllocateAddress) {
//Check memory alignment.
if ((Memory32 & (EFI_PAGE_SIZE - 1)) != 0) return EFI_INVALID_PARAMETER;
StartPage = (Memory32 - 0xa0000) >> 12;
//Check for allocation range.
if ((StartPage + NumberOfPages) > 32) return EFI_OUT_OF_RESOURCES;
//Check if pages are free.
for (i = StartPage; i < (StartPage + NumberOfPages); ++i)
{
if (ABSegPageAlloc[i] == TRUE) return EFI_OUT_OF_RESOURCES;
}
for(i = StartPage; i < (StartPage + NumberOfPages); ++i)
ABSegPageAlloc[i] = TRUE;
return EFI_SUCCESS;
}
if (Memory32 < 0xa0ffe) return EFI_OUT_OF_RESOURCES; //Max address must be whole page.
MaxAddress = Memory32 & ~(EFI_PAGE_SIZE - 1); //Round down to 4k alignment
EndPage = (Memory32 - 0xa0000) >> 12;
if (EndPage > 31) EndPage = 31; //Max page is 31.
//Find free pages.
FreePageCount = (UINT8) NumberOfPages;
for (i = 0; i < EndPage; ++i)
{
UINTN j;
if (ABSegPageAlloc[i] == TRUE)
{
FreePageCount = (UINT8) NumberOfPages;
continue; //Page allocated. Find next
}
if (--FreePageCount) continue;
//Found page
StartPage = i + 1 - NumberOfPages;
*pMemory32 = (VOID *)((StartPage << 12) + 0xa0000);
for (j = StartPage; j <= i; ++j) ABSegPageAlloc[j] = TRUE;
return EFI_SUCCESS;
}
return EFI_OUT_OF_RESOURCES;
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: AllocateABSegPages
//
// Description: Allocate SMM 4k pages of memory in A or B segment.
//
// Input:
// IN EFI_PHYSICAL_ADDRESS Memory - Memory address.
// IN UINTN NumberOfPages
//
// Output:
// EFI_STATUS
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
EFI_STATUS FreeABSegPages(
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages
)
{
UINTN i, StartPage, EndPage;
VOID *Memory32 = (VOID*)(UINTN)Memory;
if (((UINT32)(UINTN)Memory32 & (EFI_PAGE_SIZE - 1)) != 0) return EFI_INVALID_PARAMETER;
if ((UINT32)(UINTN)Memory32 < 0xa0000) return EFI_NOT_FOUND;
StartPage = ((UINT32)(UINTN)Memory32 - 0xa0000) >> 12;
//Check for allocation range.
if ((StartPage + NumberOfPages) > 32) return EFI_NOT_FOUND;
EndPage = StartPage + NumberOfPages;
for (i = StartPage; i < EndPage; ++i) if (ABSegPageAlloc[i] == FALSE) return EFI_NOT_FOUND;
for (i = StartPage; i < EndPage; ++i) ABSegPageAlloc[i] = FALSE;
return EFI_SUCCESS;
}
//<AMI_PHDR_START>
//---------------------------------------------------------------------------
//
// Procedure: InitializeMemoryManager
//
// Description: Initialize the memory manager, so the functions can be used.
//
// Input: VOID
//
// Output: VOID
//
//---------------------------------------------------------------------------
//<AMI_PHDR_END>
VOID InitializeMemoryManager(SMM_BASE_PRIVATE_STRUCT *Private) {
UINT32 *pSmmBase = &Private->SmmHob->SmmBase[0];
UINT32 NumCpus = Private->SmmHob->NumCpus;
UINT8 i;
#if SMM_EXCLUDE_A000 == 1
for (i = 0; i < 16; ++i) ABSegPageAlloc[i] = TRUE;
#endif
//Initalize Legacy memory management.
for (i = 0; i < NumCpus; ++i) {
if (pSmmBase[i] < 0x100000) {
UINT8 Page = (UINT8)((pSmmBase[i] - 0x98000) / 4096);
ASSERT(Page < 32);
ASSERT((Page + 7) < 32);
ABSegPageAlloc[Page] = TRUE;
ABSegPageAlloc[Page + 7] = TRUE;
}
}
//If Bsp = TSEG, reserve 1 page for SMM thunk and its stack.
if (pSmmBase[0] > 0x100000) {
#if SMM_EXCLUDE_A000 != 1
ABSegPageAlloc[0] = TRUE;
#else
ABSegPageAlloc[16] = TRUE;
#endif
}
//Initialize TSEG memory management.
gSmmMemBase = Private->SmmAllocMemoryStart;
gSmmMemEnd = gSmmMemBase + Private->SmmAllocMemoryLength;
ConstructMemoryReservedTable(&gTableHead);
}
//*************************************************************************
//*************************************************************************
//** **
//** (C)Copyright 1985-2008, American Megatrends, Inc. **
//** **
//** All Rights Reserved. **
//** **
//** 5555 Oakbrook Parkway, Suite 200, Norcross, GA 30093 **
//** **
//** Phone: (770)-246-8600 **
//** **
//*************************************************************************
//*************************************************************************
|