summaryrefslogtreecommitdiff
path: root/ReferenceCode/Chipset/SystemAgent/MemoryInit/Pei/Source/ReadTraining/MrcReadReceiveEnable.c
blob: 3a4918856dc2a16085dde1f0b3c7892702a67def (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
/** @file
  Implementation of the receive enable algorithm.
  Receive enable training is made out of two stages, the first is finding the
  DQS rising edge for each DRAM device, and the second is determining the
  roundtrip latency by locating the preamble cycle.

@copyright
  Copyright (c) 1999 - 2013 Intel Corporation. All rights reserved
  This software and associated documentation (if any) is furnished
  under a license and may only be used or copied in accordance
  with the terms of the license. Except as permitted by such
  license, no part of this software or documentation may be
  reproduced, stored in a retrieval system, or transmitted in any
  form or by any means without the express written consent of
  Intel Corporation.

  This file contains an 'Intel Peripheral Driver' and uniquely
  identified as "Intel Reference Module" and is
  licensed for Intel CPUs and chipsets under the terms of your
  license agreement with Intel or your vendor.  This file may
  be modified by the user, subject to additional terms of the
  license agreement.

**/
#include "MrcReadReceiveEnable.h"

///
/// Local defines
///

#define RCV_EN_CENTER_LC (17)

/**
@brief
  Perform receive enable training.
  Optimize RcvEn timing with MPR pattern

  @param[in, out] MrcData - Include all MRC global data.

  @retval MrcStatus -  if succeeded, return mrcSuccess
**/
MrcStatus
MrcReadLevelingTraining (
  IN OUT MrcParameters *const MrcData
  )
{
  const MRC_REUTAddress REUTAddress = {{0, 0, 0, 0},    // Start
                                       {0, 0, 0, 1023}, // Stop
                                       {0, 0, 0, 0},    // Order
                                       {0, 0, 0, 0},    // IncRate
                                       {0, 0, 0, 1}};   // IncValue
  const U8              RLStep0 = 8;
  const MrcInput        *Inputs;
  const MrcDebug        *Debug;
  MrcOutput             *Outputs;
  MrcControllerOut      *ControllerOut;
  MrcChannelOut         *ChannelOut;
  MrcStatus             Status;
  MrcProfile            Profile;
  U8                    NumSamples;
  U8                    FineStep;
  U8                    DumArr[7];
  U8                    Channel;
  U8                    Rank;
  U8                    Byte;
  U8                    ByteN;     // ByteNumber
  U8                    ByteNTimes2;
  U8                    ChBitMask;
  U8                    RankMask;  // RankBitMask for both channels
  U8                    Done;
  U8                    Inc;
  U16                   RLStart;
  U16                   RLStop;
  U16                   RLDelay;
  U16                   ChResult[MAX_CHANNEL];
  U16                   ChMask;
  U32                   CRValue;
  U32                   Offset;
  U32                   RtIoComp;
  U32                   RtLatency;
  S32                   InitialPassingStart[MAX_CHANNEL][MAX_SDRAM_IN_DIMM];
  S32                   InitialPassingEnd[MAX_CHANNEL][MAX_SDRAM_IN_DIMM];
  S32                   CurrentPassingStart[MAX_CHANNEL][MAX_SDRAM_IN_DIMM];
  S32                   CurrentPassingEnd[MAX_CHANNEL][MAX_SDRAM_IN_DIMM];
  S32                   LargestPassingStart[MAX_CHANNEL][MAX_SDRAM_IN_DIMM];
  S32                   LargestPassingEnd[MAX_CHANNEL][MAX_SDRAM_IN_DIMM];
  S32                   IncPreAmble[MAX_CHANNEL][MAX_SDRAM_IN_DIMM];
  S32                   iWidth;
  S32                   cWidth;
  S32                   lWidth;
  S32                   Center;
  S32                   Width;
  BOOL                  Pass;
  MRC_WDBPattern        WDBPattern;
  U8                    Temp;
  U16                   TDqsCkDrift;
#ifdef ULT_FLAG
  U32                   DclkPs;
#endif // ULT_FLAG

  DDRDATACH0_CR_DDRCRDATACONTROL0_STRUCT  DdrCrDataControl0;
  DDRDATA0CH0_CR_DDRCRDATACONTROL2_STRUCT DdrCrDataControl2;
  MCHBAR_CH0_CR_SC_IO_LATENCY_STRUCT      ScIoLatency;
  DDRDATA0CH0_CR_DATATRAINFEEDBACK_STRUCT DataTrainFeedback;

  WDBPattern.IncRate  = 32;
  WDBPattern.Start    = 0;
  WDBPattern.Stop     = 9;
  WDBPattern.DQPat    = BasicVA;
  Status              = mrcSuccess;
  Done                = 0;
  Inputs              = &MrcData->SysIn.Inputs;
  Debug               = &Inputs->Debug;
  Outputs             = &MrcData->SysOut.Outputs;
  ControllerOut       = &Outputs->Controller[0];
  ChBitMask           = Outputs->ValidChBitMask;
  RankMask            = Outputs->ValidRankMask;
  Profile             = Inputs->MemoryProfile;
  TDqsCkDrift         = tDQSCK_DRIFT;  // Pull in RcvEna by 1 QClk for Traditional.

#ifdef ULT_FLAG
#endif

  MrcOemMemorySet (DumArr, 1, sizeof (DumArr));

  NumSamples = 6;
  FineStep   = 1;

  RtIoComp  = 0;
  RtLatency = 0;

  switch (Inputs->CpuModel) {
    case cmCRW:
      RtIoComp  = MRC_ROUND_TRIP_IO_COMPENSATION_2_CHANNEL_A0;
      RtLatency = HW_ROUNDT_LAT_DEFAULT_VALUE_A0;
      break;

    case cmHSW_ULT:
      RtIoComp  = MRC_ROUND_TRIP_IO_COMPENSATION_2_CHANNEL_ULT_A0;
      RtLatency = HW_ROUNDT_LAT_DEFAULT_VALUE_ULT_A0;
      break;

    case cmHSW:
    default:
      RtIoComp = (Inputs->CpuStepping > csHswA0) ? MRC_ROUND_TRIP_IO_COMPENSATION_2_CHANNEL_B0 :
        MRC_ROUND_TRIP_IO_COMPENSATION_2_CHANNEL_A0;
      RtLatency = (Inputs->CpuStepping > csHswA0) ? HW_ROUNDT_LAT_DEFAULT_VALUE_B0 :
        HW_ROUNDT_LAT_DEFAULT_VALUE_A0;
      break;
  }

  //
  // CmdPat=PatRd, NumCL=2, LC=7, REUTAddress, SOE=0,
  // WDBPattern, EnCADB=0, EnCKE=0, SubSeqWait=8
  //
  SetupIOTest (MrcData, ChBitMask, PatRd, 2, NumSamples + 1, &REUTAddress, 0, &WDBPattern, 0, 0, 8);

  //
  // Prepare Channel and Rank bit mask & Enable RLMode, force Odt and SAmp.
  //
  for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
    if (!(MrcChannelExist (Outputs, Channel))) {
      continue;
    }
    ChannelOut = &ControllerOut->Channel[Channel];

    //
    // Enable ReadLeveling Mode and Force On ODT and SenseAmp
    //
    for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
      Offset = DDRDATA0CH0_CR_DDRCRDATACONTROL2_REG +
        ((DDRDATA0CH1_CR_DDRCRDATACONTROL2_REG - DDRDATA0CH0_CR_DDRCRDATACONTROL2_REG) * Channel) +
        ((DDRDATA1CH0_CR_DDRCRDATACONTROL2_REG - DDRDATA0CH0_CR_DDRCRDATACONTROL2_REG) * Byte);
      DdrCrDataControl2.Data            = ChannelOut->DqControl2[Byte].Data;
      DdrCrDataControl2.Bits.ForceRxOn  = 1;
      MrcWriteCR (MrcData, Offset, DdrCrDataControl2.Data);
    }
    Offset = DDRDATACH0_CR_DDRCRDATACONTROL0_REG +
      ((DDRDATACH1_CR_DDRCRDATACONTROL0_REG - DDRDATACH0_CR_DDRCRDATACONTROL0_REG) * Channel);
    DdrCrDataControl0.Data = ChannelOut->DqControl0.Data;

#ifdef ULT_FLAG
    if (Outputs->DdrType == MRC_DDR_TYPE_LPDDR3) {
      //
      // W/A for b4618574 - @todo: remove for HSW ULT C0
      // Can't have ForceOdtOn together with Leaker, disable LPDDR mode during this training step
      // LPDDR_Mode is restored at the end of this function from the host structure.
      //
      DdrCrDataControl0.Bits.LPDDR_Mode = 0;
      MrcWriteCrMulticast (MrcData, Offset, DdrCrDataControl0.Data);
    }
#endif // ULT_FLAG

    DdrCrDataControl0.Bits.ForceOdtOn     = 1;
    DdrCrDataControl0.Bits.RLTrainingMode = 1;
    MrcWriteCrMulticast (MrcData, Offset, DdrCrDataControl0.Data);

    //
    // Set initial IO Latency and IO_COMP
    //
    Offset = MCHBAR_CH0_CR_SC_IO_LATENCY_REG +
      ((MCHBAR_CH1_CR_SC_IO_LATENCY_REG - MCHBAR_CH0_CR_SC_IO_LATENCY_REG) * Channel);
    ScIoLatency.Data = 0;
    ScIoLatency.Bits.RT_IOCOMP = RtIoComp;
    MrcWriteCR (MrcData, Offset, ScIoLatency.Data);
  }

  for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
    if (!((MRC_BIT0 << Rank) & RankMask)) {
      //
      // Skip if both channels empty
      //
      continue;
    }

    MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "\nRank %d\n", Rank);

    ChBitMask = 0;
    for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
      ChBitMask |= SelectReutRanks (MrcData, Channel, MRC_BIT0 << Rank, 0);
      if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
        continue;
      }

      ChannelOut = &ControllerOut->Channel[Channel];

      ChannelOut->IoLatency[Rank] = 0;
      //
      // Set initial Roundtrip Latency values -4 QCLK assumed for worst board layout
      //
      // Default ROUNDT_LAT = HW_ROUNDT_LAT_DEFAULT_VALUE + nMode value * 2 + (2 * tCL) + 4QCLK + PI_CLK
      // LPDDR3 formula:      HW_ROUNDT_LAT_DEFAULT_VALUE + (2 * tCL) + 4QCLK + PI_CLK + tDQSCK_max
      // NMode = 3 during training mode
      //
      Temp = (Outputs->Ratio >= 2) ? Outputs->Ratio : 0;

#ifdef ULT_FLAG
      if (Outputs->DdrType == MRC_DDR_TYPE_LPDDR3) {
        DclkPs = Outputs->Qclkps * 2;
        CRValue = RtLatency + (2 * ChannelOut->Timing[Profile].tCL) + MAX (Temp, 4) + 1 + (tDQSCK_MAX + DclkPs - 1) / DclkPs;
      } else
#endif // ULT_FLAG
      {
        CRValue = RtLatency + (2 * 2) + (2 * ChannelOut->Timing[Profile].tCL) + MAX (Temp, 4) + 1;
      }
      CRValue = MIN (MCHBAR_CH0_CR_SC_ROUNDT_LAT_Lat_R0D0_MAX, CRValue);
      Offset = MCHBAR_CH0_CR_SC_ROUNDT_LAT_REG +
        ((MCHBAR_CH1_CR_SC_ROUNDT_LAT_REG - MCHBAR_CH0_CR_SC_ROUNDT_LAT_REG) * Channel) + Rank;
      MrcWriteCR8 (MrcData, Offset, (U8) CRValue);
      ChannelOut->RTLatency[Rank] = (U8) CRValue;
    }
    //
    // ******************************************
    // STEP 1 and 2: Find middle of high region
    // ******************************************
    //
    MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "Step 1 and 2 Find Middle of high region\n");
    RLStart = 256 + 24;
    RLStop  = 384 + 24;

    for (RLDelay = RLStart; RLDelay < RLStop; RLDelay += RLStep0) {
      //
      // Program RL Delays:
      //
      for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
        if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
          continue;
        }

        for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
          UpdateRxT (MrcData, Channel, Rank, Byte, 0, RLDelay);
        }
      }
      //
      // Run Test, Reset FIFOs will be done before running test
      //
      RunIOTest (MrcData, ChBitMask, BasicVA, DumArr, 1, 0);

      //
      // Update results for all Channels/Bytes
      //
      for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
        if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
          continue;
        }

        for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
          Offset = DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG +
            ((DDRDATA0CH1_CR_DATATRAINFEEDBACK_REG - DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG) * Channel) +
            ((DDRDATA1CH0_CR_DATATRAINFEEDBACK_REG - DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG) * Byte);
          Pass = (MrcReadCR (MrcData, Offset) >= (U8) (MRC_BIT0 << (NumSamples - 1)));
          if (RLDelay == RLStart) {
            if (Pass) {
              InitialPassingStart[Channel][Byte] = InitialPassingEnd[Channel][Byte]  = RLStart;
              CurrentPassingStart[Channel][Byte] = CurrentPassingEnd[Channel][Byte]  = RLStart;
              LargestPassingStart[Channel][Byte] = LargestPassingEnd[Channel][Byte]  = RLStart;
            } else {
              InitialPassingStart[Channel][Byte] = InitialPassingEnd[Channel][Byte]  = -RLStep0;
              CurrentPassingStart[Channel][Byte] = CurrentPassingEnd[Channel][Byte]  = -RLStep0;
              LargestPassingStart[Channel][Byte] = LargestPassingEnd[Channel][Byte]  = -RLStep0;
            }
          } else {
            if (Pass) {
              if (InitialPassingEnd[Channel][Byte] == (RLDelay - RLStep0)) {
                InitialPassingEnd[Channel][Byte] = RLDelay;
              }

              if (CurrentPassingEnd[Channel][Byte] == (RLDelay - RLStep0)) {
                CurrentPassingEnd[Channel][Byte] = RLDelay;
              } else {
                CurrentPassingStart[Channel][Byte] = CurrentPassingEnd[Channel][Byte] = RLDelay;
              }
              //
              // Special case for last step: Append Initial Passing Region
              // RLDelay should be considered a continuous range that wraps around 0
              //
              if ((RLDelay >= (RLStop - RLStep0)) &&
                  (InitialPassingStart[Channel][Byte] == RLStart) &&
                  (InitialPassingEnd[Channel][Byte] != RLDelay)
                  ) {

                iWidth = (CurrentPassingEnd[Channel][Byte] - CurrentPassingStart[Channel][Byte]);
                InitialPassingStart[Channel][Byte] -= (RLStep0 + iWidth);

                LargestPassingStart[Channel][Byte]  = InitialPassingStart[Channel][Byte];
                LargestPassingEnd[Channel][Byte]    = InitialPassingEnd[Channel][Byte];
                continue;
              }
              //
              // Update Largest variables
              //
              cWidth  = CurrentPassingEnd[Channel][Byte] - CurrentPassingStart[Channel][Byte];
              lWidth  = LargestPassingEnd[Channel][Byte] - LargestPassingStart[Channel][Byte];
              if (cWidth > lWidth) {
                LargestPassingStart[Channel][Byte]  = CurrentPassingStart[Channel][Byte];
                LargestPassingEnd[Channel][Byte]    = CurrentPassingEnd[Channel][Byte];
              }
            }
          }
        }
      }
    }
    //
    // Update RcvEn timing to be in the center of the high region.
    //
    for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
      if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
        continue;
      }

      ChannelOut = &ControllerOut->Channel[Channel];

      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "C%d.R%d:  Left\tRight\tWidth\tCenter\n", Channel, Rank);
      for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
        Center  = (LargestPassingEnd[Channel][Byte] + LargestPassingStart[Channel][Byte]) / 2;
        Width   = LargestPassingEnd[Channel][Byte] - LargestPassingStart[Channel][Byte];

        MRC_DEBUG_MSG (
          Debug,
          MSG_LEVEL_NOTE,
          "  B%d:   %d     %d     %d     %d\n",
          Byte,
          LargestPassingStart[Channel][Byte],
          LargestPassingEnd[Channel][Byte],
          Width,
          Center
          );

        //
        // Check if center of High was found
        //
        if (Center > RLStop) {
          MRC_DEBUG_MSG (
            Debug,
            MSG_LEVEL_ERROR,
            "\nERROR! Center of High Higher than expected for Channel: %u Byte: %u\n",
            Channel,
            Byte
            );
          return mrcReadLevelingError;
        }
        //
        // Check if width is valid
        //
        if ((Width <= 32) || (Width >= 96)) {
          MRC_DEBUG_MSG (
            Debug,
            MSG_LEVEL_ERROR,
            "\nERROR! Width region (%d) outside expected limits for Channel: %u Byte: %u\n",
            Width,
            Channel,
            Byte
            );
          return mrcReadLevelingError;
        }

        ChannelOut->RcvEn[Rank][Byte] = (U16) Center;
        UpdateRxT (MrcData, Channel, Rank, Byte, 0xFF, 0);
      }
    }
    //
    // ******************************************************************************
    // STEP 3: Walk Backwards
    // ******************************************************************************
    //
    MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "\nStep 3: Quarter Preamble - Walk Backwards\n");

    if (Outputs->ValidRankMask & (MRC_BIT0 << Rank)) {
      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "Channel     0                 1\nByte        ");
      MRC_DEBUG_MSG (
        Debug,
        MSG_LEVEL_NOTE, (
        Outputs->SdramCount == MAX_SDRAM_IN_DIMM
        ) ? "0 1 2 3 4 5 6 7 8      0 1 2 3 4 5 6 7 8" : "0 1 2 3 4 5 6 7      0 1 2 3 4 5 6 7"
        );
    }

    for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
      ChResult[Channel] = 0x1FF;
    }

    //
    // 0x1FF or 0xFF
    //
    ChMask = (MRC_BIT0 << Outputs->SdramCount) - 1;
    while ((ChResult[0] != 0) || (ChResult[1] != 0)) {
      //
      // Run Test
      //
      RunIOTest (MrcData, ChBitMask, BasicVA, DumArr, 1, 0);

      //
      // Update results for all Channel/Bytes
      //
      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "\nIOLAT =");

      for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
        ChResult[Channel] = 0;

        if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
          if (Channel == 0) {
            MRC_DEBUG_MSG (
              Debug,
              MSG_LEVEL_NOTE,
              (Outputs->SdramCount == MAX_SDRAM_IN_DIMM) ? "                       " : "                     "
              );
          }

          continue;
        }

        ChannelOut = &ControllerOut->Channel[Channel];

        MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "  %u  ", ChannelOut->IoLatency[Rank]);

        for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
          Offset = DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG +
            ((DDRDATA0CH1_CR_DATATRAINFEEDBACK_REG - DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG) * Channel) +
            ((DDRDATA1CH0_CR_DATATRAINFEEDBACK_REG - DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG) * Byte);
          DataTrainFeedback.Data  = MrcReadCR (MrcData, Offset);
          Pass                    = (DataTrainFeedback.Bits.DataTrainFeedback >= (U16) (MRC_BIT0 << (NumSamples - 1)));
          if (Pass) {
            ChResult[Channel] |= (MRC_BIT0 << Byte);
          }

          MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, Pass ? "H " : "L ");
        }
        //
        // Adjust Timing
        //
        if ((ChResult[Channel] == ChMask) && (ChannelOut->IoLatency[Rank] < 14)) {
          //
          // Adjust Timing globally for all Bytes - Number in Qclks
          //
          ChannelOut->IoLatency[Rank] = ((ChannelOut->IoLatency[Rank] + 2) & MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R0D0_MSK);

          //
          // @todo: Add an error check if we reach IOLAT > 10
          // Update Value
          //
          ByteN       = RANK_TO_DIMM_NUMBER (Rank);
          ByteNTimes2 = ByteN * 2;
          CRValue     = (ChannelOut->IoLatency[ByteNTimes2]);
          CRValue += (ChannelOut->IoLatency[ByteNTimes2 + 1] << MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R0D0_WID);
          Offset = MCHBAR_CH0_CR_SC_IO_LATENCY_REG +
            ((MCHBAR_CH1_CR_SC_IO_LATENCY_REG - MCHBAR_CH0_CR_SC_IO_LATENCY_REG) * Channel) + (ByteN);
          MrcWriteCR8 (MrcData, Offset, (U8) CRValue);
        } else {
          for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
            if (ChResult[Channel] & (MRC_BIT0 << Byte)) {
              if (ChannelOut->RcvEn[Rank][Byte] > 127) {
                ChannelOut->RcvEn[Rank][Byte] -= 128;
              } else {
                //
                // Error Handler
                //
                MRC_DEBUG_MSG (
                  Debug,
                  MSG_LEVEL_ERROR,
                  "\nERROR! Channel: %u Rank: %uByte: %u - RcvEn %u/IoLat %u while walking backwards\n",
                  Channel,
                  Rank,
                  Byte,
                  ChannelOut->RcvEn[Rank][Byte],
                  ChannelOut->IoLatency[Rank]
                  );
                return mrcReadLevelingError;
              }

              UpdateRxT (MrcData, Channel, Rank, Byte, 0xFF, 0);
            }
          }
        }
      }
    }

    MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "\n");

    for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
      if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
        continue;
      }
      ChannelOut = &ControllerOut->Channel[Channel];
      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "C%u:  Preamble\n", Channel);

      for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
        MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, " B%u: %u\n", Byte, ChannelOut->RcvEn[Rank][Byte]);
      }
    }
    //
    // ******************************************
    // STEP 4: Add 1 qclk
    // ******************************************
    //
    for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
      if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
        continue;
      }

      ChannelOut = &Outputs->Controller[0].Channel[Channel];

      for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
        ChannelOut->RcvEn[Rank][Byte] += 64;
        UpdateRxT (MrcData, Channel, Rank, Byte, 0xFF, 0);
      }
    }
    //
    // ******************************************
    // STEP 5: Walk forward
    // ******************************************
    //
    MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "Step 5 Walk forward\n");
    //
    // Find Rising Edge
    //
    ChResult[0] = 0;
    ChResult[1] = 0;

    for (Inc = 0; Inc < 64; Inc += FineStep) {
      //
      // Run Test
      //
      RunIOTest (MrcData, ChBitMask, BasicVA, DumArr, 1, 0);

      //
      // Update results for all Channel/bytes
      //
      Done = 1;
      for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
        if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
          continue;
        }
        ChannelOut = &ControllerOut->Channel[Channel];

        for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
          //
          // Skip Bytes that are already done
          //
          if (ChResult[Channel] & (MRC_BIT0 << Byte)) {
            continue;
          }
          //
          // Check if this byte is done
          //
          Offset = DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG +
            ((DDRDATA0CH1_CR_DATATRAINFEEDBACK_REG - DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG) * Channel) +
            ((DDRDATA1CH0_CR_DATATRAINFEEDBACK_REG - DDRDATA0CH0_CR_DATATRAINFEEDBACK_REG) * Byte);
          Pass = (MrcReadCR (MrcData, Offset) >= (U8) (MRC_BIT0 << (NumSamples - 1)));
          if (Pass) {
            ChResult[Channel] |= (MRC_BIT0 << Byte);
          } else {
            ChannelOut->RcvEn[Rank][Byte] += FineStep;
            UpdateRxT (MrcData, Channel, Rank, Byte, 0xFF, 0);
            IncPreAmble[Channel][Byte] = Inc;
          }
        }

        if (ChResult[Channel] != ChMask) {
          Done = 0;
        }
      }
      //
      // Skip additional testing if all Channel/bytes done
      //
      if (Done) {
        break;
      }
    }
    //
    // Check if Edge was found for all Bytes in the channels
    //
    if (!Done) {
      MRC_DEBUG_MSG (
        Debug,
        MSG_LEVEL_ERROR,
        "Error! Pre-amble edge not found for all Bytes with following final RcvEn results\n"
        );

      for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
        if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
          continue;
        }

        ChannelOut = &ControllerOut->Channel[Channel];

        MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "Channel %u Rank %u:  Preamble\n", Channel, Rank);
        for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
          MRC_DEBUG_MSG (
            Debug,
            MSG_LEVEL_NOTE,
            " Byte %u: %u %s\n",
            Byte,
            ChannelOut->RcvEn[Rank][Byte],
            ((ChResult[Channel] ^ ChMask) & (1 << Byte)) ? "" : "*** ERROR! Check This Byte ***"
            );
        }
      }

      return mrcReadLevelingError;
    }
    //
    // ******************************************
    // STEP 6: Sub 1 qclk and Clean Up Rank
    // ******************************************
    //
    MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "Step 6: Mid Preamble\n");
    for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
      if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
        continue;
      }
      ChannelOut = &ControllerOut->Channel[Channel];

      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "C%u:  Preamble Increment\n", Channel);

      for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
        //
        // For Traditional, pull in RcvEn by 64
        // For ULT, Take the DQS drift into account to the specified guardband: tDQSCK_DRIFT.
        //
        ChannelOut->RcvEn[Rank][Byte] -= TDqsCkDrift;

        UpdateRxT (MrcData, Channel, Rank, Byte, 0xFF, 0);

        MRC_DEBUG_MSG (
          Debug,
          MSG_LEVEL_NOTE,
          " B%u: %u      %u\n",
          Byte,
          ChannelOut->RcvEn[Rank][Byte],
          IncPreAmble[Channel][Byte]
          );
      }
    }
  } // END OF RANK LOOP
  //
  // Clean up after Test
  //
  for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
    if (!(MrcChannelExist (Outputs, Channel))) {
      continue;
    }
    ChannelOut = &ControllerOut->Channel[Channel];

    Offset = DDRDATACH0_CR_DDRCRDATACONTROL0_REG +
      ((DDRDATACH1_CR_DDRCRDATACONTROL0_REG - DDRDATACH0_CR_DDRCRDATACONTROL0_REG) * Channel);
    DdrCrDataControl0.Data = ChannelOut->DqControl0.Data;
#ifdef ULT_FLAG
    if (Outputs->DdrType == MRC_DDR_TYPE_LPDDR3) {
      //
      // W/A for b4618574 - @todo: remove for HSW ULT C0
      // Can't have ForceOdtOn together with Leaker, disable LPDDR mode during this training step
      // This write will disable ForceOdtOn while still keeping LPDDR_Mode disabled.
      // Second write will restore LPDDR_Mode.
      //
      DdrCrDataControl0.Bits.LPDDR_Mode = 0;
      MrcWriteCrMulticast (MrcData, Offset, DdrCrDataControl0.Data);
    }
#endif // ULT_FLAG
    MrcWriteCrMulticast (MrcData, Offset, ChannelOut->DqControl0.Data);

    for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
    Offset = DDRDATA0CH0_CR_DDRCRDATACONTROL2_REG +
      ((DDRDATA0CH1_CR_DDRCRDATACONTROL2_REG - DDRDATA0CH0_CR_DDRCRDATACONTROL2_REG) * Channel) +
      ((DDRDATA1CH0_CR_DDRCRDATACONTROL2_REG - DDRDATA0CH0_CR_DDRCRDATACONTROL2_REG) * Byte);
      MrcWriteCR (MrcData, Offset, ChannelOut->DqControl2[Byte].Data);
    }
  }

  Status = IoReset (MrcData);

  //
  // Step 7: Try to get IO Lat the same across all ranks per channel
  //
  MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "Step 7: Sync IO Lat Across Ranks\n");
  for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
    if (MrcChannelExist (Outputs, Channel)) {
      Status = MrcChangeRcvEnTiming (
        MrcData,
        Channel,
        RRE_ALL_RANKS_MASK,
        0,  // ByteMask
        0,  // Offset
        RRE_PI_TO_RESERVE
        );
    }
  }

  //
  // Print IO Latency/RcvEn
  //
#ifdef MRC_DEBUG_PRINT
  MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, " Adjusted Receive Enable and IO Lat Values\n");
  for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
    if (MrcChannelExist (Outputs, Channel)) {
      ChannelOut = &ControllerOut->Channel[Channel];
      Offset = MCHBAR_CH0_CR_SC_IO_LATENCY_REG +
        ((MCHBAR_CH1_CR_SC_IO_LATENCY_REG - MCHBAR_CH0_CR_SC_IO_LATENCY_REG) * Channel);
      ScIoLatency.Data  = MrcReadCR (MrcData, Offset);
      for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
        if ((MrcRankInChannelExist (MrcData, Rank, Channel))) {
          MRC_DEBUG_MSG (Debug,
            MSG_LEVEL_NOTE,
            "  C%d.R%d: IOLAT = %u  RT_IOCOMP = %d\n",
            Channel,
            Rank,
            ChannelOut->IoLatency[Rank],
            ScIoLatency.Bits.RT_IOCOMP
            );
          for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
            MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "   B%d:   %u\n", Byte, ChannelOut->RcvEn[Rank][Byte]);
          }
        }
      }
    }
  }
#endif

  return Status;
}

/**
@brief
  Apply an signed offset to all selected bytes/ ranks in a channel to RcvEn timing
  Robustly handles any carries to/from the IO Latency vs. RcvEn FlyBy
  PiReserve will reserve a certain number of +/- PI ticks for margin purposes
  Routine also minimizes the difference in RcvEn settings across ranks

  @param[in,out] MrcData       - MRC Global Data
  @param[in]     Channel       - The channel to adjust
  @param[in]     RankMask      - Mask of Ranks to adjust
  @param[in]     ByteMask      - Mask of Bytes to adjust by the RcvEnOffset
  @param[in]     RcvEnOffset   - Amount to offset RcvEn
  @param[in]     PiReserve     - The number of PiTicks to reserve on each edge of RcvEn

  @retval MrcStatus - mrcSuccess if successfull
                      mrcWrongInputParameter if channel doesnt exist or a RankMask of 0 is provided
                      mrcReadLevelingError if we over/underflow RT_IOCOMP field.
**/
MrcStatus
MrcChangeRcvEnTiming (
  IN OUT MrcParameters *const MrcData,
  IN     const U8             Channel,
  IN     const U8             RankMask,
  IN     const U16            ByteMask,
  IN     const S16            RcvEnOffset,
  IN     const S16            PiReserve
  )
{
  MrcStatus                          Status;
  MrcOutput                          *Outputs;
  MrcDebug                           *Debug;
  MrcChannelOut                      *ChannelOut;
  MCHBAR_CH0_CR_SC_IO_LATENCY_STRUCT ScIoLatency;
  U8                                 Rank;
  U8                                 Byte;
  S8                                 CycleOffset;
  S8                                 IoGlobalOffset;
  S8                                 IoLatRank[MAX_RANK_IN_CHANNEL];
  S8                                 IoLatTarget;
  S8                                 MaxRankLat;
  S8                                 MinRankLat;
  S16                                NewRcvEn;
  S16                                MaxRcvEn;
  S16                                MinRcvEn;
  S16                                MaxRcvEnRank[MAX_RANK_IN_CHANNEL];
  S16                                MinRcvEnRank[MAX_RANK_IN_CHANNEL];
  U32                                CrOffset;

  //
  // Init variables with min and max values
  //
  Status           = mrcSuccess;
  Outputs          = &MrcData->SysOut.Outputs;
  Debug            = &MrcData->SysIn.Inputs.Debug;
  ChannelOut       = &MrcData->SysOut.Outputs.Controller[0].Channel[Channel];
  MaxRankLat       = 0;
  MinRankLat       = 15;
  MaxRcvEn         = -4096;
  MinRcvEn         = 4096;
  IoGlobalOffset   = 0;
  MrcOemMemorySetWord ((U16*) MaxRcvEnRank, (U16)-4096, MAX_RANK_IN_CHANNEL);
  MrcOemMemorySetWord ((U16*) MinRcvEnRank, 4096, MAX_RANK_IN_CHANNEL);
  MrcOemMemorySet ((U8*) IoLatRank, 0, MAX_RANK_IN_CHANNEL);

  //
  // Quick error check on parameters
  //
  if ((!(MrcChannelExist (Outputs, Channel))) || (RankMask == 0)) {
    return mrcWrongInputParameter;
  }

  //
  // Walk through all the ranks/bytes to find Max/Min RcvEn values
  //
  for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
    if ((((MRC_BIT0 << Rank) & RankMask) != 0) && ((MrcRankInChannelExist (MrcData, Rank, Channel)))) {
      //
      // Find Max/Min for RcvEn across bytes.  RcvEn is the total (RcvEnPi - 64 * IOLat)
      //
      for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
        NewRcvEn = (S16) ChannelOut->RcvEn[Rank][Byte] - (64 * (S16) ChannelOut->IoLatency[Rank]);
        if (ByteMask & (MRC_BIT0 << Byte)) {
          //
          // Apply an offset for this byte
          //
          NewRcvEn += RcvEnOffset;
        }

        if (MaxRcvEnRank[Rank] < NewRcvEn) {
          MaxRcvEnRank[Rank] = NewRcvEn;
        }

        if (MinRcvEnRank[Rank] > NewRcvEn) {
          MinRcvEnRank[Rank] = NewRcvEn;
        }
      }
      //
      // Find Max/Min for RcvEn across ranks
      //
      if (MaxRcvEn < MaxRcvEnRank[Rank]) {
        MaxRcvEn = MaxRcvEnRank[Rank];
      }

      if (MinRcvEn > MinRcvEnRank[Rank]) {
        MinRcvEn = MinRcvEnRank[Rank];
      }
    }
  }

  //
  // Determine how far we are from the ideal center point for RcvEn timing.
  // (PiIdeal - AveRcvEn)/64 is the ideal number of cycles we should have for IOLatency
  // Command training will reduce this by 64, so plan for that now in the ideal value
  //
  IoLatTarget = (S8) ((RRE_PI_IDEAL - ((MaxRcvEn + MinRcvEn) / 2) + 32) / 64); // Rnd to closest int

  //
  // Walk through all the ranks and calculate new values of IOLat
  //
  for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
    if ((((MRC_BIT0 << Rank) & RankMask) != 0) && ((MrcRankInChannelExist (MrcData, Rank, Channel)))) {
      IoLatRank[Rank] = IoLatTarget;

      //
      // Check for RcvEn underflow
      //
      NewRcvEn = 64 * IoLatRank[Rank] + MinRcvEnRank[Rank];
      if (NewRcvEn < PiReserve) {
        IoLatRank[Rank] += (U8) ((PiReserve - NewRcvEn + 63) / 64); // Ceiling
      }

      //
      // Check for RcvEn overflow
      //
      NewRcvEn = 64 * IoLatRank[Rank] + MaxRcvEnRank[Rank];
      if (NewRcvEn > (511 - PiReserve)) {
        IoLatRank[Rank] -= (U8) ((NewRcvEn - (511 - PiReserve) + 63) / 64); // Ceiling
      }
      //
      // Check for IO Latency over/underflow
      //
      if ((IoLatRank[Rank] - IoGlobalOffset) > 14) {
        IoGlobalOffset = IoLatRank[Rank] - 14;
      }
      if ((IoLatRank[Rank] - IoGlobalOffset) < 1) {
        IoGlobalOffset = IoLatRank[Rank] - 1;
      }
    //
    // Update Byte level results
    //
      CycleOffset = IoLatRank[Rank] - (S8) ChannelOut->IoLatency[Rank];
      for (Byte = 0; Byte < Outputs->SdramCount; Byte++) {
        ChannelOut->RcvEn[Rank][Byte] += 64 * (U16) CycleOffset;
        if (ByteMask & (MRC_BIT0 << Byte)) {
          ChannelOut->RcvEn[Rank][Byte] += (U16) RcvEnOffset;
        }
        UpdateRxT (MrcData, Channel, Rank, Byte, 0xFF, 0);
      }
    }
  }
  //
  // Calculate new IOComp Latency to include over/underflow
  //
  CrOffset = MCHBAR_CH0_CR_SC_IO_LATENCY_REG +
    ((MCHBAR_CH1_CR_SC_IO_LATENCY_REG - MCHBAR_CH0_CR_SC_IO_LATENCY_REG) * Channel);
  ScIoLatency.Data = MrcReadCR (MrcData, CrOffset);

  //
  // Check to see if were under/overflowing this field
  //
  if ((IoGlobalOffset < 0) && (ScIoLatency.Bits.RT_IOCOMP < (U8) -IoGlobalOffset)) {
    Status = mrcReadLevelingError;
  } else if (
               (IoGlobalOffset > 0) &&
               ((U8)IoGlobalOffset > (MCSCHEDS_CR_SC_IO_LATENCY_RT_IOCOMP_MAX - ScIoLatency.Bits.RT_IOCOMP))
             ) {
    Status = mrcReadLevelingError;
  }

  if(Status == mrcReadLevelingError) {
    MRC_DEBUG_MSG (
      Debug,
      MSG_LEVEL_ERROR,
      "MrcChangeRcvEnTiming(): RT_IOCOMP %s\n IoGlobalOffset: %d\n RT_IOCOMP(6'b): %d\n",
      (IoGlobalOffset < 0) ? "underflowed" : "overflowed",
      IoGlobalOffset,
      ScIoLatency.Bits.RT_IOCOMP
      );
  }
  ScIoLatency.Bits.RT_IOCOMP += IoGlobalOffset;
  ChannelOut->RTIoComp        = ScIoLatency.Bits.RT_IOCOMP;

  //
  // Walk through all ranks to program new IO Latency values
  //
  ScIoLatency.Data &= ~(
                        MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R0D0_MSK +
                        MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R1D0_MSK +
                        MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R0D1_MSK +
                        MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R1D1_MSK
                        );
  for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
    if ((((MRC_BIT0 << Rank) & RankMask) != 0) && ((MrcRankInChannelExist (MrcData, Rank, Channel)))) {
      ChannelOut->IoLatency[Rank] = IoLatRank[Rank] - IoGlobalOffset;
    }
    ScIoLatency.Data |= (
        (MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R0D0_MSK & (ChannelOut->IoLatency[Rank])) <<
        (Rank * MCHBAR_CH0_CR_SC_IO_LATENCY_IOLAT_R0D0_WID)
      );
  }

  //
  // Program new IO Latency
  //
  MrcWriteCR (MrcData, CrOffset, ScIoLatency.Data);

  return Status;
}

/**
@brief
  Once the DQS high phase has been found (for each DRAM) the next stage is to find out the round trip latency,
  by locating the preamble cycle. This is achieved by trying smaller and smaller roundtrip
  values until the strobe sampling is done on the preamble cycle.
  The following algorithm is used to find the preamble cycle:

  @param[in] MrcData         - all the global data

  @retval Nothing.
**/
MrcStatus
MrcRoundTripLatency (
  IN     MrcParameters *const MrcData
  )
{
  MrcStatus         Status;
  MrcOutput         *Outputs;
  MrcControllerOut  *ControllerOut;
  MrcChannelOut     *ChannelOut;
  MrcDebug          *Debug;
  U8                Channel;
  U8                Rank;
  U8                OptParam;
  U8                RankMask;
  U8                TestList[1];
  S8                ClkShifts[1];
  U8                Start;
  U8                Stop;
  U8                LoopCount;
  U8                Update;
  U8                MinIoLat;
  U8                MaxRankRtl;
  S8                DeltaLimitRtl;
  U8                DeltaRtl;
  MCHBAR_CH0_CR_TC_BANK_RANK_A_STRUCT TcBankRankA;

  Status        = mrcSuccess;
  TestList[0]   = RdT;        // Test based on read eye width
  ClkShifts[0]  = 25;         // Delay by 25 pi ticks to guardband for delay drift/jitter
  LoopCount     = 10;
  Update        = 1;          // Apply the optimal settings
  MaxRankRtl    = 0;
  Outputs       = &MrcData->SysOut.Outputs;
  Debug         = &MrcData->SysIn.Inputs.Debug;
  ControllerOut = &Outputs->Controller[0];
  OptParam      = rtl;        // Which parameter to optimize for

  //
  // Train timing separately for each rank
  //
  for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
    RankMask = (MRC_BIT0 << Rank);
    if (!(RankMask & Outputs->ValidRankMask)) {
      continue;
    }
    //
    // Pick starting and stopping points
    //
    Stop      = 0;
    Start     = 0;
    MinIoLat  = 15;
    for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
      if (!(MrcRankInChannelExist (MrcData, Rank, Channel))) {
        continue;
      }
      ChannelOut = &ControllerOut->Channel[Channel];

      if (Stop < ChannelOut->RTLatency[Rank]) {
        Stop = ChannelOut->RTLatency[Rank];
      }

      if (MinIoLat > ChannelOut->IoLatency[Rank]) {
        MinIoLat = ChannelOut->IoLatency[Rank];
      }

      Start = Stop - MinIoLat;
    }

    if ((S8) Start < 0) {
      Start = 0;
    }
    //
    // Find optimal answer
    //
    Status = TrainDDROptParamCliff (
              MrcData,
              OptParam,
              TestList,
              sizeof (TestList),
              Start,
              Stop,
              LoopCount,
              Update,
              Outputs->MarginResult,
              ClkShifts,
              sizeof (ClkShifts),
              Rank,
              RankMask,
              0
              );
    if (Status == mrcFail) {
      return mrcRoundTripLatencyError;
    }
  }

  //
  // Limit the RTL delta across the ranks present.
  //
  MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "\nLimit the delta between Rank's RTL value.\n");
  for (Channel = 0; Channel < MAX_CHANNEL; Channel++) {
    if (MrcChannelExist (Outputs, Channel)) {

      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "Channel %d\n", Channel);
      ChannelOut = &ControllerOut->Channel[Channel];
      TcBankRankA.Data = ChannelOut->MchbarBANKRANKA;
      DeltaLimitRtl = MAX ((S8) TcBankRankA.Bits.tRDRD_dr, (S8) TcBankRankA.Bits.tRDRD_dd);
      //
      // TA Times are in dclks.  Must convert to qclks and subtract the burst length.
      // Ensure we do not underflow the variable.
      //
      DeltaLimitRtl = ((2 * DeltaLimitRtl) - 8);
      DeltaLimitRtl = MAX (DeltaLimitRtl, 0);
      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "RTL Delta Limit: %d\n", DeltaLimitRtl);

      for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
        if (MrcRankInChannelExist (MrcData, Rank, Channel)) {
          MaxRankRtl = MAX (MaxRankRtl, ChannelOut->RTLatency[Rank]);
          MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, " Rank %u RTL: %u\n", Rank, ChannelOut->RTLatency[Rank]);
        }
      }
      MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "MaxRankRtl: %u\n", MaxRankRtl);

      for (Rank = 0; Rank < MAX_RANK_IN_CHANNEL; Rank++) {
        if (MrcRankInChannelExist (MrcData, Rank, Channel)) {
          DeltaRtl = MaxRankRtl - ChannelOut->RTLatency[Rank];
          MRC_DEBUG_MSG (
            Debug,
            MSG_LEVEL_NOTE,
            "Rank %d: DeltaRtl: %u\tDeltaLimitRtl: %u%s",
            Rank,
            DeltaRtl,
            DeltaLimitRtl,
            (DeltaRtl > DeltaLimitRtl) ? "\tNew RTL: " : ""
            );
          if (DeltaRtl > DeltaLimitRtl) {
            UpdateTAParamOffset (MrcData, Channel, 0, OptParam, MaxRankRtl - DeltaLimitRtl, 1, 0, 1 << Rank);
          }
          MRC_DEBUG_MSG (Debug, MSG_LEVEL_NOTE, "\n");
        }
      }
    }
  }

  return Status;
}

/**
  Perform Receive Enable Timing Centering.
  Center Receive Enable using moderate pattern with 1D eye.

  @param[in] MrcData - Include all MRC global data.

  @retval MrcStatus - If successful, returns mrcSuccess.
**/
MrcStatus
MrcReceiveEnTimingCentering (
  IN MrcParameters *const MrcData
  )
{
  MrcOutput *Outputs;

  Outputs = &MrcData->SysOut.Outputs;

  return DQTimeCentering1D (MrcData, Outputs->ValidChBitMask, RcvEnaX, 0, RCV_EN_CENTER_LC);
}