summaryrefslogtreecommitdiff
path: root/ext/mcpat/array.cc
blob: 0e46afe033dcfd97ea1cfa97edc06af8d960a4c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*****************************************************************************
 *                                McPAT
 *                      SOFTWARE LICENSE AGREEMENT
 *            Copyright 2012 Hewlett-Packard Development Company, L.P.
 *            Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
 *                          All Rights Reserved
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ***************************************************************************/

#include <iostream>
#include <math.h>

#include "area.h"
#include "array.h"
#include "common.h"
#include "decoder.h"
#include "parameter.h"

using namespace std;

double ArrayST::area_efficiency_threshold = 20.0;
int ArrayST::ed = 0;
//Fixed number, make sure timing can be satisfied.
int ArrayST::delay_wt = 100;
int ArrayST::cycle_time_wt = 1000;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::area_wt = 10;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::dynamic_power_wt = 10;
int ArrayST::leakage_power_wt = 10;
//Fixed number, make sure timing can be satisfied.
int ArrayST::delay_dev = 1000000;
int ArrayST::cycle_time_dev = 100;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::area_dev = 1000000;
//Fixed number, This is used to exhaustive search for individual components.
int ArrayST::dynamic_power_dev = 1000000;
int ArrayST::leakage_power_dev = 1000000;
int ArrayST::cycle_time_dev_threshold = 10;


ArrayST::ArrayST(XMLNode* _xml_data,
                 const InputParameter *configure_interface, string _name,
                 enum Device_ty device_ty_, double _clockRate,
                 bool opt_local_, enum Core_type core_ty_, bool _is_default)
        : McPATComponent(_xml_data), l_ip(*configure_interface),
        device_ty(device_ty_), opt_local(opt_local_), core_ty(core_ty_),
        is_default(_is_default) {
    name = _name;
    clockRate = _clockRate;
    if (l_ip.cache_sz < MIN_BUFFER_SIZE)
        l_ip.cache_sz = MIN_BUFFER_SIZE;

    if (!l_ip.error_checking(name)) {
        exit(1);
    }

    output_data.reset();

    computeEnergy();
    computeArea();
}

void ArrayST::compute_base_power() {
    local_result = cacti_interface(&l_ip);
}

void ArrayST::computeArea() {
    area.set_area(local_result.area);
    output_data.area = local_result.area / 1e6;
}

void ArrayST::computeEnergy() {
    list<uca_org_t > candidate_solutions(0);
    list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;

    uca_org_t* temp_res = NULL;
    local_result.valid = false;

    double throughput = l_ip.throughput;
    double latency = l_ip.latency;
    bool throughput_overflow = true;
    bool latency_overflow = true;
    compute_base_power();

    if ((local_result.cycle_time - throughput) <= 1e-10 )
        throughput_overflow = false;
    if ((local_result.access_time - latency) <= 1e-10)
        latency_overflow = false;

    if (opt_for_clk && opt_local) {
        if (throughput_overflow || latency_overflow) {
            l_ip.ed = ed;

            l_ip.delay_wt = delay_wt;
            l_ip.cycle_time_wt = cycle_time_wt;

            l_ip.area_wt = area_wt;
            l_ip.dynamic_power_wt = dynamic_power_wt;
            l_ip.leakage_power_wt = leakage_power_wt;

            l_ip.delay_dev = delay_dev;
            l_ip.cycle_time_dev = cycle_time_dev;

            l_ip.area_dev = area_dev;
            l_ip.dynamic_power_dev = dynamic_power_dev;
            l_ip.leakage_power_dev = leakage_power_dev;

            //Reset overflow flag before start optimization iterations
            throughput_overflow = true;
            latency_overflow = true;

            //Clean up the result for optimized for ED^2P
            temp_res = &local_result;
            temp_res->cleanup();
        }


        while ((throughput_overflow || latency_overflow) &&
               l_ip.cycle_time_dev > cycle_time_dev_threshold) {
            compute_base_power();

            //This is the time_dev to be used for next iteration
            l_ip.cycle_time_dev -= cycle_time_dev_threshold;

            //		from best area to worst area -->worst timing to best timing
            if ((((local_result.cycle_time - throughput) <= 1e-10 ) &&
                 (local_result.access_time - latency) <= 1e-10) ||
                (local_result.data_array2->area_efficiency <
                 area_efficiency_threshold && l_ip.assoc == 0)) {
                //if no satisfiable solution is found,the most aggressive one
                //is left
                candidate_solutions.push_back(local_result);
                if (((local_result.cycle_time - throughput) <= 1e-10) &&
                    ((local_result.access_time - latency) <= 1e-10)) {
                    //ensure stop opt not because of cam
                    throughput_overflow = false;
                    latency_overflow = false;
                }

            } else {
                if ((local_result.cycle_time - throughput) <= 1e-10)
                    throughput_overflow = false;
                if ((local_result.access_time - latency) <= 1e-10)
                    latency_overflow = false;

                //if not >10 local_result is the last result, it cannot be
                //cleaned up
                if (l_ip.cycle_time_dev > cycle_time_dev_threshold) {
                    //Only solutions not saved in the list need to be
                    //cleaned up
                    temp_res = &local_result;
                    temp_res->cleanup();
                }
            }
        }


        if (l_ip.assoc > 0) {
            //For array structures except CAM and FA, Give warning but still
            //provide a result with best timing found
            if (throughput_overflow == true)
                cout << "Warning: " << name
                     << " array structure cannot satisfy throughput constraint."
                     << endl;
            if (latency_overflow == true)
                cout << "Warning: " << name
                     << " array structure cannot satisfy latency constraint."
                     << endl;
        }

        double min_dynamic_energy = BIGNUM;
        if (candidate_solutions.empty() == false) {
            local_result.valid = true;
            for (candidate_iter = candidate_solutions.begin();
                 candidate_iter != candidate_solutions.end();
                 ++candidate_iter) {
                if (min_dynamic_energy >
                    (candidate_iter)->power.readOp.dynamic) {
                    min_dynamic_energy =
                        (candidate_iter)->power.readOp.dynamic;
                    min_dynamic_energy_iter = candidate_iter;
                    local_result = *(min_dynamic_energy_iter);
                } else {
                    candidate_iter->cleanup() ;
                }

            }


        }
        candidate_solutions.clear();
    }

    double long_channel_device_reduction =
        longer_channel_device_reduction(device_ty, core_ty);

    double macro_layout_overhead = g_tp.macro_layout_overhead;
    double chip_PR_overhead = g_tp.chip_layout_overhead;
    double total_overhead = macro_layout_overhead * chip_PR_overhead;
    local_result.area *= total_overhead;

    //maintain constant power density
    double pppm_t[4] = {total_overhead, 1, 1, total_overhead};

    double sckRation = g_tp.sckt_co_eff;
    local_result.power.readOp.dynamic *= sckRation;
    local_result.power.writeOp.dynamic *= sckRation;
    local_result.power.searchOp.dynamic *= sckRation;
    local_result.power.readOp.leakage *= l_ip.nbanks;
    local_result.power.readOp.longer_channel_leakage =
        local_result.power.readOp.leakage * long_channel_device_reduction;
    local_result.power = local_result.power * pppm_t;

    local_result.data_array2->power.readOp.dynamic *= sckRation;
    local_result.data_array2->power.writeOp.dynamic *= sckRation;
    local_result.data_array2->power.searchOp.dynamic *= sckRation;
    local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
    local_result.data_array2->power.readOp.longer_channel_leakage =
        local_result.data_array2->power.readOp.leakage *
        long_channel_device_reduction;
    local_result.data_array2->power = local_result.data_array2->power * pppm_t;


    if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) {
        local_result.tag_array2->power.readOp.dynamic *= sckRation;
        local_result.tag_array2->power.writeOp.dynamic *= sckRation;
        local_result.tag_array2->power.searchOp.dynamic *= sckRation;
        local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
        local_result.tag_array2->power.readOp.longer_channel_leakage =
            local_result.tag_array2->power.readOp.leakage *
            long_channel_device_reduction;
        local_result.tag_array2->power =
            local_result.tag_array2->power * pppm_t;
    }

    power = local_result.power;

    output_data.peak_dynamic_power = power.readOp.dynamic * clockRate;
    output_data.subthreshold_leakage_power = power.readOp.leakage;
    output_data.gate_leakage_power = power.readOp.gate_leakage;
}

void ArrayST::leakage_feedback(double temperature)
{
  // Update the temperature. l_ip is already set and error-checked in the creator function.
  l_ip.temp = (unsigned int)round(temperature/10.0)*10;

  // This corresponds to cacti_interface() in the initialization process. Leakage power is updated here.
  reconfigure(&l_ip,&local_result);

  // Scale the power values. This is part of ArrayST::optimize_array().
  double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);

  double macro_layout_overhead   = g_tp.macro_layout_overhead;
  double chip_PR_overhead        = g_tp.chip_layout_overhead;
  double total_overhead          = macro_layout_overhead*chip_PR_overhead;

  double pppm_t[4]    = {total_overhead,1,1,total_overhead};

  double sckRation = g_tp.sckt_co_eff;
  local_result.power.readOp.dynamic *= sckRation;
  local_result.power.writeOp.dynamic *= sckRation;
  local_result.power.searchOp.dynamic *= sckRation;
  local_result.power.readOp.leakage *= l_ip.nbanks;
  local_result.power.readOp.longer_channel_leakage = local_result.power.readOp.leakage*long_channel_device_reduction;
  local_result.power = local_result.power* pppm_t;

  local_result.data_array2->power.readOp.dynamic *= sckRation;
  local_result.data_array2->power.writeOp.dynamic *= sckRation;
  local_result.data_array2->power.searchOp.dynamic *= sckRation;
  local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
  local_result.data_array2->power.readOp.longer_channel_leakage = local_result.data_array2->power.readOp.leakage*long_channel_device_reduction;
  local_result.data_array2->power = local_result.data_array2->power* pppm_t;

  if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache)
  {
    local_result.tag_array2->power.readOp.dynamic *= sckRation;
    local_result.tag_array2->power.writeOp.dynamic *= sckRation;
    local_result.tag_array2->power.searchOp.dynamic *= sckRation;
    local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
    local_result.tag_array2->power.readOp.longer_channel_leakage = local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction;
    local_result.tag_array2->power = local_result.tag_array2->power* pppm_t;
  }
}

ArrayST::~ArrayST() {
    local_result.cleanup();
}