1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
// -*- mode:c++ -*-
// Copyright (c) 2010-2013,2016-2018 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
// Giacomo Gabrielli
def format Crc32() {{
decode_block = '''
{
const IntRegIndex rm = (IntRegIndex)(uint32_t)bits(machInst, 3, 0);
const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
const IntRegIndex rd = (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
uint8_t c_poly = bits(machInst, 9);
uint8_t sz = bits(machInst, 22, 21);
uint8_t crc_select = (c_poly << 2) | sz;
switch(crc_select) {
case 0x0:
return new Crc32b(machInst, rd, rn, rm);
case 0x1:
return new Crc32h(machInst, rd, rn, rm);
case 0x2:
return new Crc32w(machInst, rd, rn, rm);
case 0x4:
return new Crc32cb(machInst, rd, rn, rm);
case 0x5:
return new Crc32ch(machInst, rd, rn, rm);
case 0x6:
return new Crc32cw(machInst, rd, rn, rm);
default:
return new Unknown(machInst);
}
}
'''
}};
def format ArmERet() {{
decode_block = "return new Eret(machInst);"
}};
def format Svc() {{
decode_block = "return new Svc(machInst, bits(machInst, 23, 0));"
}};
def format ArmSmcHyp() {{
decode_block = '''
{
if (bits(machInst, 21))
{
return new Smc(machInst);
} else {
uint32_t imm16 = (bits(machInst, 19, 8) << 4) |
(bits(machInst, 3, 0) << 0);
return new Hvc(machInst, imm16);
}
}
'''
}};
def format ArmMsrMrs() {{
decode_block = '''
{
const uint8_t byteMask = bits(machInst, 19, 16);
const uint8_t sysM = byteMask | (bits(machInst, 8) << 4);
const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 3, 0);
const IntRegIndex rd = (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
const uint32_t opcode = bits(machInst, 24, 21);
const bool useImm = bits(machInst, 25);
const bool r = bits(machInst, 22);
const bool isBanked = bits(machInst, 9);
const uint32_t unrotated = bits(machInst, 7, 0);
const uint32_t rotation = (bits(machInst, 11, 8) << 1);
const uint32_t imm = rotate_imm(unrotated, rotation);
switch (opcode) {
case 0x8:
if (isBanked) {
return new MrsBankedReg(machInst, rd, sysM, r!=0);
} else {
return new MrsCpsr(machInst, rd);
}
case 0x9:
if (useImm) {
return new MsrCpsrImm(machInst, imm, byteMask);
} else {
if (isBanked) {
return new MsrBankedReg(machInst, rn, sysM, r!=0);
} else {
return new MsrCpsrReg(machInst, rn, byteMask);
}
}
case 0xa:
if (isBanked) {
return new MrsBankedReg(machInst, rd, sysM, r!=0);
} else {
return new MrsSpsr(machInst, rd);
}
case 0xb:
if (useImm) {
return new MsrSpsrImm(machInst, imm, byteMask);
} else {
if (isBanked) {
return new MsrBankedReg(machInst, rn, sysM, r!=0);
} else {
return new MsrSpsrReg(machInst, rn, byteMask);
}
}
default:
return new Unknown(machInst);
}
}
'''
}};
let {{
header_output = '''
StaticInstPtr
decodeMcrMrc14(ExtMachInst machInst);
'''
decoder_output = '''
StaticInstPtr
decodeMcrMrc14(ExtMachInst machInst)
{
const uint32_t opc1 = bits(machInst, 23, 21);
const uint32_t crn = bits(machInst, 19, 16);
const uint32_t opc2 = bits(machInst, 7, 5);
const uint32_t crm = bits(machInst, 3, 0);
const MiscRegIndex miscReg = decodeCP14Reg(crn, opc1, crm, opc2);
const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
const bool isRead = bits(machInst, 20);
switch (miscReg) {
case MISCREG_NOP:
return new NopInst(machInst);
case MISCREG_CP14_UNIMPL:
return new FailUnimplemented(isRead ? "mrc unknown" : "mcr unknown",
machInst,
csprintf("miscreg crn:%d opc1:%d crm:%d opc2:%d %s unknown",
crn, opc1, crm, opc2, isRead ? "read" : "write"));
default:
uint32_t iss = mcrMrcIssBuild(isRead, crm, rt, crn, opc1, opc2);
if (isRead) {
return new Mrc14(machInst, rt, (IntRegIndex)miscReg, iss);
} else {
return new Mcr14(machInst, (IntRegIndex)miscReg, rt, iss);
}
}
}
'''
}};
def format McrMrc14() {{
decode_block = '''
return decodeMcrMrc14(machInst);
'''
}};
let {{
header_output = '''
StaticInstPtr decodeMcrMrc14(ExtMachInst machInst);
StaticInstPtr decodeMcrMrc15(ExtMachInst machInst);
'''
decoder_output = '''
StaticInstPtr
decodeMcrMrc15(ExtMachInst machInst)
{
const uint32_t opc1 = bits(machInst, 23, 21);
const uint32_t crn = bits(machInst, 19, 16);
const uint32_t opc2 = bits(machInst, 7, 5);
const uint32_t crm = bits(machInst, 3, 0);
const MiscRegIndex miscReg = decodeCP15Reg(crn, opc1, crm, opc2);
const IntRegIndex rt = (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
const bool isRead = bits(machInst, 20);
uint32_t iss = mcrMrcIssBuild(isRead, crm, rt, crn, opc1, opc2);
switch (miscReg) {
case MISCREG_NOP:
return new McrMrcMiscInst(isRead ? "mrc nop" : "mcr nop",
machInst, iss, MISCREG_NOP);
case MISCREG_CP15_UNIMPL:
return new FailUnimplemented(isRead ? "mrc unkown" : "mcr unkown",
machInst,
csprintf("miscreg crn:%d opc1:%d crm:%d opc2:%d %s unknown",
crn, opc1, crm, opc2, isRead ? "read" : "write"));
case MISCREG_IMPDEF_UNIMPL:
return new McrMrcImplDefined(
isRead ? "mrc implementation defined" :
"mcr implementation defined",
machInst, iss, MISCREG_IMPDEF_UNIMPL);
case MISCREG_CP15ISB:
return new Isb(machInst, iss);
case MISCREG_CP15DSB:
return new Dsb(machInst, iss);
case MISCREG_CP15DMB:
return new Dmb(machInst, iss);
case MISCREG_DCIMVAC:
return new McrDcimvac(machInst, miscReg, rt, iss);
case MISCREG_DCCMVAC:
return new McrDccmvac(machInst, miscReg, rt, iss);
case MISCREG_DCCMVAU:
return new McrDccmvau(machInst, miscReg, rt, iss);
case MISCREG_DCCIMVAC:
return new McrDccimvac(machInst, miscReg, rt, iss);
default:
if (miscRegInfo[miscReg][MISCREG_WARN_NOT_FAIL]) {
std::string full_mnem = csprintf("%s %s",
isRead ? "mrc" : "mcr", miscRegName[miscReg]);
warn("\\tinstruction '%s' unimplemented\\n", full_mnem);
// Remove the warn flag and set the implemented flag. This
// prevents the instruction warning a second time, it also
// means the instruction is actually generated. Actually
// creating the instruction to access an register that isn't
// implemented sounds a bit silly, but its required to get
// the correct behaviour for hyp traps and undef exceptions.
miscRegInfo[miscReg][MISCREG_IMPLEMENTED] = true;
miscRegInfo[miscReg][MISCREG_WARN_NOT_FAIL] = false;
}
if (miscRegInfo[miscReg][MISCREG_IMPLEMENTED]) {
if (isRead)
return new Mrc15(machInst, rt, miscReg, iss);
return new Mcr15(machInst, miscReg, rt, iss);
} else {
return new FailUnimplemented(isRead ? "mrc" : "mcr", machInst,
csprintf("%s %s", isRead ? "mrc" : "mcr",
miscRegName[miscReg]));
}
}
}
'''
}};
def format McrMrc15() {{
decode_block = '''
return decodeMcrMrc15(machInst);
'''
}};
let {{
header_output = '''
StaticInstPtr
decodeMcrrMrrc15(ExtMachInst machInst);
'''
decoder_output = '''
StaticInstPtr
decodeMcrrMrrc15(ExtMachInst machInst)
{
const uint32_t crm = bits(machInst, 3, 0);
const uint32_t opc1 = bits(machInst, 7, 4);
const MiscRegIndex miscReg = decodeCP15Reg64(crm, opc1);
const IntRegIndex rt = (IntRegIndex) (uint32_t) bits(machInst, 15, 12);
const IntRegIndex rt2 = (IntRegIndex) (uint32_t) bits(machInst, 19, 16);
const bool isRead = bits(machInst, 20);
switch (miscReg) {
case MISCREG_CP15_UNIMPL:
return new FailUnimplemented(isRead ? "mrc" : "mcr", machInst,
csprintf("miscreg crm:%d opc1:%d 64-bit %s unknown",
crm, opc1, isRead ? "read" : "write"));
default:
if (miscRegInfo[miscReg][MISCREG_WARN_NOT_FAIL]) {
std::string full_mnem = csprintf("%s %s",
isRead ? "mrrc" : "mcrr", miscRegName[miscReg]);
warn("\\tinstruction '%s' unimplemented\\n", full_mnem);
// Remove the warn flag and set the implemented flag. This
// prevents the instruction warning a second time, it also
// means the instruction is actually generated. Actually
// creating the instruction to access an register that isn't
// implemented sounds a bit silly, but its required to get
// the correct behaviour for hyp traps and undef exceptions.
miscRegInfo[miscReg][MISCREG_IMPLEMENTED] = true;
miscRegInfo[miscReg][MISCREG_WARN_NOT_FAIL] = false;
}
if (miscRegInfo[miscReg][MISCREG_IMPLEMENTED]) {
uint32_t iss = mcrrMrrcIssBuild(isRead, crm, rt, rt2, opc1);
if (isRead) {
StaticInstPtr si = new Mrrc15(machInst, miscReg, rt2, rt, iss);
if (miscRegInfo[miscReg][MISCREG_UNVERIFIABLE])
si->setFlag(StaticInst::IsUnverifiable);
return si;
}
return new Mcrr15(machInst, rt2, rt, miscReg, iss);
} else {
return new FailUnimplemented(isRead ? "mrrc" : "mcrr", machInst,
csprintf("%s %s",
isRead ? "mrrc" : "mcrr", miscRegName[miscReg]));
}
}
}
'''
}};
def format Mcrr15() {{
decode_block = '''
return decodeMcrrMrrc15(machInst);
'''
}};
def format Mrrc15() {{
decode_block = '''
return decodeMcrrMrrc15(machInst);
'''
}};
|