summaryrefslogtreecommitdiff
path: root/src/arch/arm/kvm/arm_cpu.cc
blob: 69d6f8c2e60e58c6c74b2ab8768245a78d6b8d5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
/*
 * Copyright (c) 2012 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Andreas Sandberg
 */

#include "arch/arm/kvm/arm_cpu.hh"

#include <linux/kvm.h>

#include <algorithm>
#include <cerrno>
#include <memory>

#include "arch/registers.hh"
#include "cpu/kvm/base.hh"
#include "debug/Kvm.hh"
#include "debug/KvmContext.hh"
#include "debug/KvmInt.hh"
#include "sim/pseudo_inst.hh"

using namespace ArmISA;

#define EXTRACT_FIELD(val, mask, shift)         \
    (((val) & (mask)) >> (shift))

#define REG_IS_ARM(id)                          \
    (((id) & KVM_REG_ARCH_MASK) == KVM_REG_ARM)

#define REG_IS_32BIT(id)                                \
    (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32)

#define REG_IS_64BIT(id)                                \
    (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64)

#define REG_IS_CP(id, cp)                       \
    (((id) & KVM_REG_ARM_COPROC_MASK) == (cp))

#define REG_IS_CORE(id) REG_IS_CP((id), KVM_REG_ARM_CORE)

#define REG_IS_VFP(id) REG_IS_CP((id), KVM_REG_ARM_VFP)
#define REG_VFP_REG(id) ((id) & KVM_REG_ARM_VFP_MASK)
// HACK: These aren't really defined in any of the headers, so we'll
// assume some reasonable values for now.
#define REG_IS_VFP_REG(id) (REG_VFP_REG(id) < 0x100)
#define REG_IS_VFP_CTRL(id) (REG_VFP_REG(id) >= 0x100)

#define REG_IS_DEMUX(id) REG_IS_CP((id), KVM_REG_ARM_DEMUX)


// There is no constant in the kernel headers defining the mask to use
// to get the core register index. We'll just do what they do
// internally.
#define REG_CORE_IDX(id)                                                \
    (~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE))

#define REG_CP(id)                                                      \
    EXTRACT_FIELD(id, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_COPROC_SHIFT)

#define REG_CRN(id)                                                     \
    EXTRACT_FIELD(id, KVM_REG_ARM_32_CRN_MASK, KVM_REG_ARM_32_CRN_SHIFT)

#define REG_OPC1(id)                                                    \
    EXTRACT_FIELD(id, KVM_REG_ARM_OPC1_MASK, KVM_REG_ARM_OPC1_SHIFT)

#define REG_CRM(id)                                                     \
    EXTRACT_FIELD(id, KVM_REG_ARM_CRM_MASK, KVM_REG_ARM_CRM_SHIFT)

#define REG_OPC2(id)                                                    \
    EXTRACT_FIELD(id, KVM_REG_ARM_32_OPC2_MASK, KVM_REG_ARM_32_OPC2_SHIFT)

#define REG_CP32(cpnum, crn, opc1, crm, opc2) ( \
        (KVM_REG_ARM | KVM_REG_SIZE_U32) |      \
        ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
        ((crn) << KVM_REG_ARM_32_CRN_SHIFT) |   \
        ((opc1) << KVM_REG_ARM_OPC1_SHIFT) |    \
        ((crm) << KVM_REG_ARM_CRM_SHIFT) |      \
        ((opc2) << KVM_REG_ARM_32_OPC2_SHIFT))

#define REG_CP64(cpnum, opc1, crm) (            \
        (KVM_REG_ARM | KVM_REG_SIZE_U64) |      \
        ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
        ((opc1) << KVM_REG_ARM_OPC1_SHIFT) |    \
        ((crm) << KVM_REG_ARM_CRM_SHIFT))

#define REG_CORE32(kname) (                     \
        (KVM_REG_ARM | KVM_REG_SIZE_U32) |      \
        (KVM_REG_ARM_CORE) |                    \
        (KVM_REG_ARM_CORE_REG(kname)))

#define REG_VFP32(regno) (                      \
        (KVM_REG_ARM | KVM_REG_SIZE_U32) |      \
        KVM_REG_ARM_VFP | (regno))

#define REG_VFP64(regno) (                      \
        (KVM_REG_ARM | KVM_REG_SIZE_U64) |      \
        KVM_REG_ARM_VFP | (regno))

#define REG_DEMUX32(dmxid, val) (               \
        (KVM_REG_ARM | KVM_REG_SIZE_U32) |      \
        (dmxid) | (val))

// Some of the co-processor registers are invariants and must have the
// same value on both the host and the guest. We need to keep a list
// of these to prevent gem5 from fiddling with them on the guest.
static uint64_t invariant_reg_vector[] = {
    REG_CP32(15, 0, 0, 0, 0), // MIDR
    REG_CP32(15, 0, 0, 0, 1), // CTR
    REG_CP32(15, 0, 0, 0, 2), // TCMTR
    REG_CP32(15, 0, 0, 0, 3), // TLBTR
    REG_CP32(15, 0, 0, 0, 6), // REVIDR

    REG_CP32(15, 0, 0, 1, 0), // ID_PFR0
    REG_CP32(15, 0, 0, 1, 1), // ID_PFR1
    REG_CP32(15, 0, 0, 1, 2), // ID_DFR0
    REG_CP32(15, 0, 0, 1, 3), // ID_AFR0
    REG_CP32(15, 0, 0, 1, 4), // ID_MMFR0
    REG_CP32(15, 0, 0, 1, 5), // ID_MMFR1
    REG_CP32(15, 0, 0, 1, 6), // ID_MMFR2
    REG_CP32(15, 0, 0, 1, 7), // ID_MMFR3

    REG_CP32(15, 0, 0, 2, 0), // ID_ISAR0
    REG_CP32(15, 0, 0, 2, 1), // ID_ISAR1
    REG_CP32(15, 0, 0, 2, 2), // ID_ISAR2
    REG_CP32(15, 0, 0, 2, 3), // ID_ISAR3
    REG_CP32(15, 0, 0, 2, 4), // ID_ISAR4
    REG_CP32(15, 0, 0, 2, 5), // ID_ISAR5

    REG_CP32(15, 0, 1, 0, 0), // CSSIDR
    REG_CP32(15, 0, 1, 0, 1), // CLIDR
    REG_CP32(15, 0, 1, 0, 7), // AIDR

    REG_VFP32(KVM_REG_ARM_VFP_MVFR0),
    REG_VFP32(KVM_REG_ARM_VFP_MVFR1),
    REG_VFP32(KVM_REG_ARM_VFP_FPSID),

    REG_DEMUX32(KVM_REG_ARM_DEMUX_ID_CCSIDR, 0),
};

const static uint64_t KVM_REG64_TTBR0(REG_CP64(15, 0, 2));
const static uint64_t KVM_REG64_TTBR1(REG_CP64(15, 1, 2));

#define INTERRUPT_ID(type, vcpu, irq) (                    \
        ((type) << KVM_ARM_IRQ_TYPE_SHIFT) |               \
        ((vcpu) << KVM_ARM_IRQ_VCPU_SHIFT) |               \
        ((irq) << KVM_ARM_IRQ_NUM_SHIFT))

#define INTERRUPT_VCPU_IRQ(vcpu)                                \
    INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ)

#define INTERRUPT_VCPU_FIQ(vcpu)                                \
    INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ)


#define COUNT_OF(l) (sizeof(l) / sizeof(*l))

const std::set<uint64_t> ArmKvmCPU::invariant_regs(
    invariant_reg_vector,
    invariant_reg_vector + COUNT_OF(invariant_reg_vector));


ArmKvmCPU::KvmIntRegInfo ArmKvmCPU::kvmIntRegs[] = {
    { REG_CORE32(usr_regs.ARM_r0), INTREG_R0, "R0" },
    { REG_CORE32(usr_regs.ARM_r1), INTREG_R1, "R1" },
    { REG_CORE32(usr_regs.ARM_r2), INTREG_R2, "R2" },
    { REG_CORE32(usr_regs.ARM_r3), INTREG_R3, "R3" },
    { REG_CORE32(usr_regs.ARM_r4), INTREG_R4, "R4" },
    { REG_CORE32(usr_regs.ARM_r5), INTREG_R5, "R5" },
    { REG_CORE32(usr_regs.ARM_r6), INTREG_R6, "R6" },
    { REG_CORE32(usr_regs.ARM_r7), INTREG_R7, "R7" },
    { REG_CORE32(usr_regs.ARM_r8), INTREG_R8, "R8" },
    { REG_CORE32(usr_regs.ARM_r9), INTREG_R9, "R9" },
    { REG_CORE32(usr_regs.ARM_r10), INTREG_R10, "R10" },
    { REG_CORE32(usr_regs.ARM_fp), INTREG_R11, "R11" },
    { REG_CORE32(usr_regs.ARM_ip), INTREG_R12, "R12" },
    { REG_CORE32(usr_regs.ARM_sp), INTREG_R13, "R13(USR)" },
    { REG_CORE32(usr_regs.ARM_lr), INTREG_R14, "R14(USR)" },

    { REG_CORE32(svc_regs[0]), INTREG_SP_SVC, "R13(SVC)" },
    { REG_CORE32(svc_regs[1]), INTREG_LR_SVC, "R14(SVC)" },

    { REG_CORE32(abt_regs[0]), INTREG_SP_ABT, "R13(ABT)" },
    { REG_CORE32(abt_regs[1]), INTREG_LR_ABT, "R14(ABT)" },

    { REG_CORE32(und_regs[0]), INTREG_SP_UND, "R13(UND)" },
    { REG_CORE32(und_regs[1]), INTREG_LR_UND, "R14(UND)" },

    { REG_CORE32(irq_regs[0]), INTREG_SP_IRQ, "R13(IRQ)" },
    { REG_CORE32(irq_regs[1]), INTREG_LR_IRQ, "R14(IRQ)" },


    { REG_CORE32(fiq_regs[0]), INTREG_R8_FIQ, "R8(FIQ)" },
    { REG_CORE32(fiq_regs[1]), INTREG_R9_FIQ, "R9(FIQ)" },
    { REG_CORE32(fiq_regs[2]), INTREG_R10_FIQ, "R10(FIQ)" },
    { REG_CORE32(fiq_regs[3]), INTREG_R11_FIQ, "R11(FIQ)" },
    { REG_CORE32(fiq_regs[4]), INTREG_R12_FIQ, "R12(FIQ)" },
    { REG_CORE32(fiq_regs[5]), INTREG_R13_FIQ, "R13(FIQ)" },
    { REG_CORE32(fiq_regs[6]), INTREG_R14_FIQ, "R14(FIQ)" },
    { 0, NUM_INTREGS, NULL }
};

ArmKvmCPU::KvmCoreMiscRegInfo ArmKvmCPU::kvmCoreMiscRegs[] = {
    { REG_CORE32(usr_regs.ARM_cpsr), MISCREG_CPSR, "CPSR" },
    { REG_CORE32(svc_regs[2]), MISCREG_SPSR_SVC, "SPSR(SVC)" },
    { REG_CORE32(abt_regs[2]), MISCREG_SPSR_ABT, "SPSR(ABT)" },
    { REG_CORE32(und_regs[2]), MISCREG_SPSR_UND, "SPSR(UND)" },
    { REG_CORE32(irq_regs[2]), MISCREG_SPSR_IRQ, "SPSR(IRQ)" },
    { REG_CORE32(fiq_regs[2]), MISCREG_SPSR_FIQ, "SPSR(FIQ)" },
    { 0, NUM_MISCREGS }
};

ArmKvmCPU::ArmKvmCPU(ArmKvmCPUParams *params)
    : BaseKvmCPU(params),
      irqAsserted(false), fiqAsserted(false)
{
}

ArmKvmCPU::~ArmKvmCPU()
{
}

void
ArmKvmCPU::startup()
{
    BaseKvmCPU::startup();

    /* TODO: This needs to be moved when we start to support VMs with
     * multiple threads since kvmArmVCpuInit requires that all CPUs in
     * the VM have been created.
     */
    /* TODO: The CPU type needs to be configurable once KVM on ARM
     * starts to support more CPUs.
     */
    kvmArmVCpuInit(KVM_ARM_TARGET_CORTEX_A15);
}

Tick
ArmKvmCPU::kvmRun(Tick ticks)
{
    bool simFIQ(interrupts[0]->checkRaw(INT_FIQ));
    bool simIRQ(interrupts[0]->checkRaw(INT_IRQ));

    if (fiqAsserted != simFIQ) {
        fiqAsserted = simFIQ;
        DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ);
        vm.setIRQLine(INTERRUPT_VCPU_FIQ(vcpuID), simFIQ);
    }
    if (irqAsserted != simIRQ) {
        irqAsserted = simIRQ;
        DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ);
        vm.setIRQLine(INTERRUPT_VCPU_IRQ(vcpuID), simIRQ);
    }

    return BaseKvmCPU::kvmRun(ticks);
}

void
ArmKvmCPU::dump()
{
    dumpKvmStateCore();
    dumpKvmStateMisc();
}

void
ArmKvmCPU::updateKvmState()
{
    DPRINTF(KvmContext, "Updating KVM state...\n");

    updateKvmStateCore();
    updateKvmStateMisc();
}

void
ArmKvmCPU::updateThreadContext()
{
    DPRINTF(KvmContext, "Updating gem5 state...\n");

    updateTCStateCore();
    updateTCStateMisc();
}

Tick
ArmKvmCPU::onKvmExitHypercall()
{
    ThreadContext *tc(getContext(0));
    const uint32_t reg_ip(tc->readIntRegFlat(INTREG_R12));
    const uint8_t func((reg_ip >> 8) & 0xFF);
    const uint8_t subfunc(reg_ip & 0xFF);

    DPRINTF(Kvm, "KVM Hypercall: 0x%x/0x%x\n", func, subfunc);
    const uint64_t ret(PseudoInst::pseudoInst(getContext(0), func, subfunc));

    // Just set the return value using the KVM API instead of messing
    // with the context. We could have used the context, but that
    // would have required us to request a full context sync.
    setOneReg(REG_CORE32(usr_regs.ARM_r0), ret & 0xFFFFFFFF);
    setOneReg(REG_CORE32(usr_regs.ARM_r1), (ret >> 32) & 0xFFFFFFFF);

    return 0;
}

const ArmKvmCPU::RegIndexVector &
ArmKvmCPU::getRegList() const
{
    if (_regIndexList.size() == 0) {
        std::unique_ptr<struct kvm_reg_list> regs;
        uint64_t i(1);

        do {
            i <<= 1;
            regs.reset((struct kvm_reg_list *)
                       operator new(sizeof(struct kvm_reg_list) +
                                    i * sizeof(uint64_t)));
            regs->n = i;
        } while (!getRegList(*regs));
        _regIndexList.assign(regs->reg,
                             regs->reg + regs->n);
    }

    return _regIndexList;
}

void
ArmKvmCPU::kvmArmVCpuInit(uint32_t target)
{
    struct kvm_vcpu_init init;

    memset(&init, 0, sizeof(init));

    init.target = target;

    kvmArmVCpuInit(init);
}

void
ArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init)
{
    if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1)
        panic("KVM: Failed to initialize vCPU\n");
}

MiscRegIndex
ArmKvmCPU::decodeCoProcReg(uint64_t id) const
{
    const unsigned cp(REG_CP(id));
    const bool is_reg32(REG_IS_32BIT(id));
    const bool is_reg64(REG_IS_64BIT(id));

    // CP numbers larger than 15 are reserved for KVM extensions
    if (cp > 15)
        return NUM_MISCREGS;

    const unsigned crm(REG_CRM(id));
    const unsigned crn(REG_CRN(id));
    const unsigned opc1(REG_OPC1(id));
    const unsigned opc2(REG_OPC2(id));

    if (is_reg32) {
        switch (cp) {
          case 14:
            return decodeCP14Reg(crn, opc1, crm, opc2);

          case 15:
            return decodeCP15Reg(crn, opc1, crm, opc2);

          default:
            return NUM_MISCREGS;
        }
    } else if (is_reg64) {
        return NUM_MISCREGS;
    } else {
        warn("Unhandled register length, register (0x%x) ignored.\n");
        return NUM_MISCREGS;
    }
}

ArmISA::MiscRegIndex
ArmKvmCPU::decodeVFPCtrlReg(uint64_t id) const
{
    if (!REG_IS_ARM(id) || !REG_IS_VFP(id) || !REG_IS_VFP_CTRL(id))
        return NUM_MISCREGS;

    const unsigned vfp_reg(REG_VFP_REG(id));
    switch (vfp_reg) {
      case KVM_REG_ARM_VFP_FPSID: return MISCREG_FPSID;
      case KVM_REG_ARM_VFP_FPSCR: return MISCREG_FPSCR;
      case KVM_REG_ARM_VFP_MVFR0: return MISCREG_MVFR0;
      case KVM_REG_ARM_VFP_MVFR1: return MISCREG_MVFR1;
      case KVM_REG_ARM_VFP_FPEXC: return MISCREG_FPEXC;

      case KVM_REG_ARM_VFP_FPINST:
      case KVM_REG_ARM_VFP_FPINST2:
        warn_once("KVM: FPINST not implemented.\n");
        return NUM_MISCREGS;

      default:
        return NUM_MISCREGS;
    }
}

bool
ArmKvmCPU::isInvariantReg(uint64_t id)
{
    /* Mask away the value field from multiplexed registers, we assume
     * that entire groups of multiplexed registers can be treated as
     * invariant. */
    if (REG_IS_ARM(id) && REG_IS_DEMUX(id))
        id &= ~KVM_REG_ARM_DEMUX_VAL_MASK;

    return invariant_regs.find(id) != invariant_regs.end();
}

bool
ArmKvmCPU::getRegList(struct kvm_reg_list &regs) const
{
    if (ioctl(KVM_GET_REG_LIST, (void *)&regs) == -1) {
        if (errno == E2BIG) {
            return false;
        } else {
            panic("KVM: Failed to get vCPU register list (errno: %i)\n",
                  errno);
        }
    } else {
        return true;
    }
}

void
ArmKvmCPU::dumpKvmStateCore()
{
    /* Print core registers */
    uint32_t pc(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
    inform("PC: 0x%x\n", pc);

    for (const KvmIntRegInfo *ri(kvmIntRegs);
         ri->idx != NUM_INTREGS; ++ri) {

        uint32_t value(getOneRegU32(ri->id));
        inform("%s: 0x%x\n", ri->name, value);
    }

    for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
         ri->idx != NUM_MISCREGS; ++ri) {

        uint32_t value(getOneRegU32(ri->id));
        inform("%s: 0x%x\n", miscRegName[ri->idx], value);
    }
}

void
ArmKvmCPU::dumpKvmStateMisc()
{
    /* Print co-processor registers */
    const RegIndexVector &reg_ids(getRegList());;
    for (RegIndexVector::const_iterator it(reg_ids.begin());
         it != reg_ids.end(); ++it) {
        uint64_t id(*it);

        if (REG_IS_ARM(id) && REG_CP(id) <= 15) {
            dumpKvmStateCoProc(id);
        } else if (REG_IS_ARM(id) && REG_IS_VFP(id)) {
            dumpKvmStateVFP(id);
        } else if (REG_IS_ARM(id) && REG_IS_DEMUX(id)) {
            switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
              case KVM_REG_ARM_DEMUX_ID_CCSIDR:
                inform("CCSIDR [0x%x]: %s\n",
                       EXTRACT_FIELD(id,
                                     KVM_REG_ARM_DEMUX_VAL_MASK,
                                     KVM_REG_ARM_DEMUX_VAL_SHIFT),
                       getAndFormatOneReg(id));
                break;
              default:
                inform("DEMUX [0x%x, 0x%x]: %s\n",
                       EXTRACT_FIELD(id,
                                     KVM_REG_ARM_DEMUX_ID_MASK,
                                     KVM_REG_ARM_DEMUX_ID_SHIFT),
                       EXTRACT_FIELD(id,
                                     KVM_REG_ARM_DEMUX_VAL_MASK,
                                     KVM_REG_ARM_DEMUX_VAL_SHIFT),
                       getAndFormatOneReg(id));
                break;
            }
        } else if (!REG_IS_CORE(id)) {
            inform("0x%x: %s\n", id, getAndFormatOneReg(id));
        }
    }
}

void
ArmKvmCPU::dumpKvmStateCoProc(uint64_t id)
{
    assert(REG_IS_ARM(id));
    assert(REG_CP(id) <= 15);

    if (REG_IS_32BIT(id)) {
        // 32-bit co-proc registers
        MiscRegIndex idx(decodeCoProcReg(id));
        uint32_t value(getOneRegU32(id));

        if (idx != NUM_MISCREGS &&
            !(idx >= MISCREG_CP15_UNIMP_START && idx < MISCREG_CP15_END)) {
            const char *name(miscRegName[idx]);
            const unsigned m5_ne(tc->readMiscRegNoEffect(idx));
            const unsigned m5_e(tc->readMiscReg(idx));
            inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: "
                   "[%s]: 0x%x/0x%x\n",
                   REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
                   REG_OPC2(id), isInvariantReg(id),
                   name, value, m5_e);
            if (m5_e != m5_ne) {
                inform("readMiscReg: %x, readMiscRegNoEffect: %x\n",
                       m5_e, m5_ne);
            }
        } else {
            const char *name(idx != NUM_MISCREGS ? miscRegName[idx] : "-");
            inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: [%s]: "
                   "0x%x\n",
                   REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
                   REG_OPC2(id), isInvariantReg(id), name, value);
        }
    } else {
        inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i "
               "len: 0x%x]: %s\n",
               REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
               REG_OPC2(id), isInvariantReg(id),
               EXTRACT_FIELD(id, KVM_REG_SIZE_MASK, KVM_REG_SIZE_SHIFT),
               getAndFormatOneReg(id));
    }
}

void
ArmKvmCPU::dumpKvmStateVFP(uint64_t id)
{
    assert(REG_IS_ARM(id));
    assert(REG_IS_VFP(id));

    if (REG_IS_VFP_REG(id)) {
        const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
        inform("VFP reg %i: %s", idx, getAndFormatOneReg(id));
    } else if (REG_IS_VFP_CTRL(id)) {
        MiscRegIndex idx(decodeVFPCtrlReg(id));
        if (idx != NUM_MISCREGS) {
            inform("VFP [%s]: %s", miscRegName[idx], getAndFormatOneReg(id));
        } else {
            inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
        }
    } else {
        inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
    }
}

void
ArmKvmCPU::updateKvmStateCore()
{
    for (const KvmIntRegInfo *ri(kvmIntRegs);
         ri->idx != NUM_INTREGS; ++ri) {

        uint64_t value(tc->readIntRegFlat(ri->idx));
        DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
        setOneReg(ri->id, value);
    }

    DPRINTF(KvmContext, "kvm(PC) := 0x%x\n", tc->instAddr());
    setOneReg(REG_CORE32(usr_regs.ARM_pc), tc->instAddr());

    for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
         ri->idx != NUM_MISCREGS; ++ri) {

        uint64_t value(tc->readMiscReg(ri->idx));
        DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
        setOneReg(ri->id, value);
    }

    if (DTRACE(KvmContext))
        dumpKvmStateCore();
}

void
ArmKvmCPU::updateKvmStateMisc()
{
    static bool warned(false); // We can't use warn_once since we want
                               // to show /all/ registers

    const RegIndexVector &regs(getRegList());

    for (RegIndexVector::const_iterator it(regs.begin());
         it != regs.end();
         ++it) {

        if (!REG_IS_ARM(*it)) {
            if (!warned)
                warn("Skipping non-ARM register: 0x%x\n", *it);
        } else if (isInvariantReg(*it)) {
            DPRINTF(Kvm, "Skipping invariant register: 0x%x\n", *it);
        } else if (REG_IS_CORE(*it)) {
            // Core registers are handled in updateKvmStateCore
            continue;
        } else if (REG_CP(*it) <= 15) {
            updateKvmStateCoProc(*it, !warned);
        } else if (REG_IS_VFP(*it)) {
            updateKvmStateVFP(*it, !warned);
        } else {
            if (!warned) {
                warn("Skipping register with unknown CP (%i) id: 0x%x\n",
                     REG_CP(*it), *it);
            }
        }

    }

    warned = true;
    if (DTRACE(KvmContext))
        dumpKvmStateMisc();
}

void
ArmKvmCPU::updateKvmStateCoProc(uint64_t id, bool show_warnings)
{
    MiscRegIndex reg(decodeCoProcReg(id));

    assert(REG_IS_ARM(id));
    assert(REG_CP(id) <= 15);

    if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
        // HACK HACK HACK: Workaround for 64-bit TTBRx
        reg = (id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1);
        if (show_warnings)
            hack("KVM: 64-bit TTBBRx workaround\n");
    }

    if (reg == NUM_MISCREGS) {
        if (show_warnings) {
            warn("KVM: Ignoring unknown KVM co-processor register (0x%.8x):\n",
                 id);
            warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
                 " opc2: %i]\n",
                 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
                 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
        }
    } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
        if (show_warnings)
            warn("KVM: Co-processor reg. %s not implemented by gem5.\n",
                 miscRegName[reg]);
    } else {
        setOneReg(id, tc->readMiscRegNoEffect(reg));
    }
}


void
ArmKvmCPU::updateKvmStateVFP(uint64_t id, bool show_warnings)
{
    assert(REG_IS_ARM(id));
    assert(REG_IS_VFP(id));

    if (REG_IS_VFP_REG(id)) {
        if (!REG_IS_64BIT(id)) {
            if (show_warnings)
                warn("Unexpected VFP register length (reg: 0x%x).\n", id);
            return;
        }
        const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
        const unsigned idx_base(idx << 1);
        const unsigned idx_hi(idx_base + 1);
        const unsigned idx_lo(idx_base + 0);
        uint64_t value(
            ((uint64_t)tc->readFloatRegBitsFlat(idx_hi) << 32) |
            tc->readFloatRegBitsFlat(idx_lo));

        setOneReg(id, value);
    } else if (REG_IS_VFP_CTRL(id)) {
        MiscRegIndex idx(decodeVFPCtrlReg(id));
        if (idx == NUM_MISCREGS) {
            if (show_warnings)
                warn("Unhandled VFP control register: 0x%x\n", id);
            return;
        }
        if (!REG_IS_32BIT(id)) {
            if (show_warnings)
                warn("Ignoring VFP control register (%s) with "
                     "unexpected size.\n",
                     miscRegName[idx]);
            return;
        }
        setOneReg(id, (uint32_t)tc->readMiscReg(idx));
    } else {
        if (show_warnings)
            warn("Unhandled VFP register: 0x%x\n", id);
    }
}

void
ArmKvmCPU::updateTCStateCore()
{
    for (const KvmIntRegInfo *ri(kvmIntRegs);
         ri->idx != NUM_INTREGS; ++ri) {

        tc->setIntRegFlat(ri->idx, getOneRegU32(ri->id));
    }

    for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
         ri->idx != NUM_MISCREGS; ++ri) {

        tc->setMiscRegNoEffect(ri->idx, getOneRegU32(ri->id));
    }

    /* We want the simulator to execute all side-effects of the CPSR
     * update since this updates PC state and register maps.
     */
    tc->setMiscReg(MISCREG_CPSR, tc->readMiscRegNoEffect(MISCREG_CPSR));

    // We update the PC state after we have updated the CPSR the
    // contents of the CPSR affects how the npc is updated.
    PCState pc(tc->pcState());
    pc.set(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
    tc->pcState(pc);

    if (DTRACE(KvmContext))
        dumpKvmStateCore();
}

void
ArmKvmCPU::updateTCStateMisc()
{
    static bool warned(false); // We can't use warn_once since we want
                               // to show /all/ registers

    const RegIndexVector &reg_ids(getRegList());;
    for (RegIndexVector::const_iterator it(reg_ids.begin());
         it != reg_ids.end(); ++it) {

        if (!REG_IS_ARM(*it)) {
            if (!warned)
                warn("Skipping non-ARM register: 0x%x\n", *it);
        } else if (REG_IS_CORE(*it)) {
            // Core registers are handled in updateKvmStateCore
        } else if (REG_CP(*it) <= 15) {
            updateTCStateCoProc(*it, !warned);
        } else if (REG_IS_VFP(*it)) {
            updateTCStateVFP(*it, !warned);
        } else {
            if (!warned) {
                warn("Skipping register with unknown CP (%i) id: 0x%x\n",
                     REG_CP(*it), *it);
            }
        }
    }

    warned = true;

    if (DTRACE(KvmContext))
        dumpKvmStateMisc();
}

void
ArmKvmCPU::updateTCStateCoProc(uint64_t id, bool show_warnings)
{
    MiscRegIndex reg(decodeCoProcReg(id));

    assert(REG_IS_ARM(id));
    assert(REG_CP(id) <= 15);

    if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
        // HACK HACK HACK: We don't currently support 64-bit TTBR0/TTBR1
        hack_once("KVM: 64-bit TTBRx workaround\n");
        tc->setMiscRegNoEffect(
            id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1,
            (uint32_t)(getOneRegU64(id) & 0xFFFFFFFF));
    } else if (reg == MISCREG_TTBCR) {
        uint32_t value(getOneRegU64(id));
        if (value & 0x80000000)
            panic("KVM: Guest tried to enable LPAE.\n");
        tc->setMiscRegNoEffect(reg, value);
    } else if (reg == NUM_MISCREGS) {
        if (show_warnings) {
            warn("KVM: Ignoring unknown KVM co-processor register:\n", id);
            warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
                 " opc2: %i]\n",
                 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
                 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
        }
    } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
        if (show_warnings)
            warn_once("KVM: Co-processor reg. %s not implemented by gem5.\n",
                      miscRegName[reg]);
    } else {
        tc->setMiscRegNoEffect(reg, getOneRegU32(id));
    }
}

void
ArmKvmCPU::updateTCStateVFP(uint64_t id, bool show_warnings)
{
    assert(REG_IS_ARM(id));
    assert(REG_IS_VFP(id));

    if (REG_IS_VFP_REG(id)) {
        if (!REG_IS_64BIT(id)) {
            if (show_warnings)
                warn("Unexpected VFP register length (reg: 0x%x).\n", id);
            return;
        }
        const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
        const unsigned idx_base(idx << 1);
        const unsigned idx_hi(idx_base + 1);
        const unsigned idx_lo(idx_base + 0);
        uint64_t value(getOneRegU64(id));

        tc->setFloatRegBitsFlat(idx_hi, (value >> 32) & 0xFFFFFFFF);
        tc->setFloatRegBitsFlat(idx_lo, value & 0xFFFFFFFF);
    } else if (REG_IS_VFP_CTRL(id)) {
        MiscRegIndex idx(decodeVFPCtrlReg(id));
        if (idx == NUM_MISCREGS) {
            if (show_warnings)
                warn("Unhandled VFP control register: 0x%x\n", id);
            return;
        }
        if (!REG_IS_32BIT(id)) {
            if (show_warnings)
                warn("Ignoring VFP control register (%s) with "
                     "unexpected size.\n",
                     miscRegName[idx]);
            return;
        }
        tc->setMiscReg(idx, getOneRegU64(id));
    } else {
        if (show_warnings)
            warn("Unhandled VFP register: 0x%x\n", id);
    }
}

ArmKvmCPU *
ArmKvmCPUParams::create()
{
    return new ArmKvmCPU(this);
}